TS Webinar Series:

Fatality Risk Assessment

Anne Hulsey on behalf of the Seismic Risk Working Group

27 February, 2024

Motivation

"Risk-informed" approach for developing the acceleration spectra

- risk is not the primary driver in developing the spectra, S_a(T)
 - assessed as a secondary step to test the risk tolerability
- risk is variable across buildings, informed by many things not just S_a(T)
 - not possible to select a strict risk value to target for all buildings

SRWG preliminarily selected a 1/500 annual probability of exceedance (APoE) for ULS, then checked whether the distribution of fatality risk was tolerable.

Fatality risk tolerability

Metric: annual individual fatality risk, AIFR

- Risk distribution across all potential code-conforming buildings
 - Should roughly fall between 10⁻⁶ and 10⁻⁵
 - Majority should be well below 10⁻⁵

Risk assessment methodology

Risk assessment

Quantifying the shaking hazard

Risk assessment

A. Hulsey

Quantifying the building performance

Risk assessment

Risk calculation

Linking fatalities to building performance

Risk assessment

Majority of building-related deaths and serious injuries are caused by structural collapse (Horspool et al. 2020)

building performance limit state = collapse

Rate of fatality given collapse

- Variable, depending on type of collapse
- Often taken as P(fatality|collapse)=10% (e.g. Silva et al. 2016, Horspool et al. 2023)
 annual collapse risk of 5x10⁻⁵ becomes AIFR of 5x10⁻⁶

Including variability in building performance

Risk assessment

Computing fatality risk for all buildings

Risk assessment

* Figures are not to scale

Fatality risk distribution

- Expected distribution of risk among code-conforming buildings
 - Less than 10% extends beyond 1x10⁻⁵
 - Majority is below 0.5x10⁻⁵

T = 1.5 seconds V_{s30} = 400 m/s

S_a(T) for ULS: annual probability of exceedance of 1/500

Fatality risk by location

- T = 1.5 seconds
- Vs30 = 400 m/s
- S_a(T): uniform hazard for an annual probability of exceedance of 1/500
- Auckland uses the APoE of 1/500 from the 90th percentile hazard (lower bound that controls in lower hazard)

Conclusion

- Risk is assessed/evaluated after the preliminary $S_a(T)$ development.
- Risk computation includes hazard, building collapse performance, and the likelihood of fatality given collapse
- Risk distribution considers a range of risk across code-conforming buildings
- Majority of risk associated with the ULS Sa(T) is within 10⁻⁶ to 10⁻⁵