T 1 2 2 o 2 o 2y 2 2 2 2 2 2 2 2 2 2 2y 2 2y 2 2 2 2 2 2 2 2 2 2 2 2 2y 2

Good Practice Guidelines
for Risk Management of
Software-based Systems

AT

"N

N A

2

2

2

2

@. N
EEYRREBRIDRH AT "X
B BRIDRYSYES

The New Zealand The Institute of
EDIT_IputEI' MEASUREMENT AND CONTROL NZ INC.
Society Inc.

ENGINEERS NEW ZEALAND

CONTENTS

Minister’s Foreword

Foreword

Introduction

Risk Concepts in the Engineering Context
Risk Assessment

Risk Reduction

The Effectiveness-case

Summary

Acknowledgements

References

Appendix 1: Critical Software Systems

© o H» b W DN

10
15
15
15
16

MINISTER’S FOREWORD

New Zealand’s future economic development and international competitiveness is reliant upon improving our digital
capability, infrastructures and skills - across government, the business sector and communities. These aims are
brought together in the Labour-led Government’s Digital Strategy.

Underpinning many of these areas is reliance upon international good practice and conformance with internationally-
recognised standards. In the area of software engineering standards IPENZ has taken a leadership role and developed
Good Practice Guidelines for Software Engineering in New Zealand. Increasingly, New Zealand software development
companies will need to conform to accepted international benchmarks in order to remain internationally competitive.
These guidelines mean that New Zealand companies will have a point of reference for the standards required by the
global software market when developing new products.

The Government recognises that these guidelines are important. Industry-led initiatives, such as the development
of these guidelines, assist in New Zealand’s transformation into an innovative, knowledge-based, internationally-
competitive economy.

Therefore, | commend the Institution and its collaborators for undertaking this valuable work.

Hon David Cunliffe

FOREWORD

New Zealand’s economic development relies on good practices for developing and operating software-intensive
systems. Moreover, to strengthen New Zealand’s export competitiveness - both in terms of cost structures and
delivered product quality - software development organisations must adopt the good practices already being used
elsewhere around the world.

The financial transaction component of our economy has been largely “digital” for many years now. We are also rapidly
implementing “digital government” through initiatives flowing from the Government’s Digital Strategy. But these critical
infrastructures for our 21st century economy fundamentally rely on trustworthy software-intensive systems.

Already our society is highly dependent on software intensive systems, and in turn their definition, development,
implementation and operations. Obvious everyday examples include:

. electronic cash registers used for virtually all purchasing - whatever the final payment mechanism might be
. stock control systems

. monitoring and control systems for public utilities, transportation systems and health care

. rapid and easy web-based access to government-held information

. industrial control systems

Building and operating these kinds of critical systems are dependent on good practices across the whole software-
intensive system lifecycle, such as those codified by international software engineering standards and maturity
frameworks. While slavishly following good practices won’t guarantee reliable or cost-effective development and
operations, poor or mediocre practices make reliability and effectiveness a matter of chance rather than good
management.

There are many other reasons for referring to documented good practices. They:

U foster traceability of features delivered to meet customers’ requirements
. describe ways of avoiding risks caused by the failure of software-intensive systems
U provide checklists of procedures and practices that improve the overall efficiency of software
development processes
U encompass considerations for building in and maintaining security, privacy and resilience to malicious attacks

In short, good practices as embodied in international software standards and frameworks are the roadmaps towards a
disciplined approach to software systems development and operations.

INTRODUCTION

In a hardware-based engineering project, managing risks is one
facet of overall project management. A risk assessment should
be carried out in the initial stages of the project, followed by a
number of related activities and reviews during the development
of the design. The risk management process identifies areas
that need special care during the operational life of the project
(from initial concept development, through implementation and
operation, to final disposal) and will ensure the use of suitable
procedures to minimise risk and ensure that overall project
management takes risk into account.

While risk management is often concerned with issues related
to the physical safety of people who will use the final product,
other areas of risk exposure such as financial viability and
environmental effects are often considered at the same time.
In many cases, the overall risk may mostly depend on these
other areas.

With software-based systems, there is the same need to identify
risks associated with the project, and ensure the use

of appropriate management techniques. This document
examines standard engineering practice for risk management,
and how it applies to a project that involves large software
engineering content.

RISK CONCEPTS IN THE ENGINEERING CONTEXT

In this context, the term “risk” has a slightly different meaning
from that used in normal conversation. In everyday use,

“risk” refers to an element or effect that has some potentially
damaging consequences. In engineering work, the risk
associated with a project is a measure of the potential cost
associated with undesirable effects, and considers both the
probability of a damaging event and the severity of the damage
done if that event should come to pass.

A useful parallel is to consider a hazard on a golf course. In this
case, the damaging event is a ball landing in the hazard, and the
average number of extra strokes needed to get out of the hazard
can measure the potential severity. While this measure indicates
the potential damage to a scorecard if a golfer happens to hit
the hazard, it only gives a partial indication of the potential
impact of the hazard. To look at the relative significance of

a hazard compared to others, we also have to look at the
likelihood that a ball will actually land in the hazard. A given
design of hazard may be relatively benign if located well away
from the hole and off the fairway, but cause many problems if
located in a critical location.

We can assign a relative cost to golfing hazards by counting
the number of additional strokes they impose over a period,

or converting this to an average cost per player. Players could
potentially use this information to develop a strategy for a
particular hole to minimise the total cost to their scorecards,
by managing club and shot selection. The impact of landing in
a hazard on a particular player’s scorecard may be reduced if
the player develops skills in removing the ball from a sand-trap
- this is an example of what we will refer to as “mitigation”.

In a similar fashion, engineering risk looks at a number of
identified hazards associated with a project over a period and
the total cost they may cause. This information is then used

to identify the most significant contributions to the overall risk
budget and develop appropriate strategies to minimise the
potential losses. These measures focus on hazards that have
the potential to cause the most damage, and include techniques
to remove hazards or minimise the potential damage of those
that cannot be removed, and take precautions that reduce the
severity of any resulting damage.

A complete study of the risks associated with a hardware-based
design project must look at all possible hazards throughout the
operational life of the system. This “lifecycle” covers activities
from development, construction and commissioning through
the productive period to final decommissioning, demolition

and disposal. In a project involving software, the physical
activities associated with construction and commissioning may
be relatively minor, but there may be hazards associated with
introducing new software into a system already in operation,
for example. Care must be taken when removing software to
avoid affecting programmes that remain in use, and there are

also problems that have arisen with “dead” software that is
left in a computer but is not actually being used. Data stored in
computers marked for disposal must be deleted.

Software hazards can also arise through the way the system is
operated. For example, one of the problems associated with the
Therac particle accelerator that overdosed six patients was due
to an operator who was very familiar with the system and made
a number of keystrokes in rapid succession.

In the notes that follow, the following terminology is used:

. Hazard - a condition that has the potential to cause
unwanted costs or damage.

. Hazardous event - an event whereby a hazard actually
causes unwanted costs or damage.

U Likelihood of a hazardous event - the expected frequency
of the event occurring, measured as a number of events in
a specified time. Alternatively, this is the probability that the
event will occur within a specified time.

o Severity of a hazard - the potential cost that might arise
from the hazard. It is expressed in a consistent way for all
hazards assessed, to allow meaningful comparisons of the
relative impact of each hazard.

. Mitigation - a measure or measures that reduce the
severity of a particular hazardous event, once that event
has occurred.

. Risk associated with a hazard - the expected cost of
a hazard over a period. It is determined numerically by
multiplying the severity of a hazard by the sum of the
likelihoods of the hazardous events.

Failure Types - Random, Systematic or System

Hardware failures are generally random in nature. Standard
models are based on a well-defined pattern of failure, described
in terms of predictable failure rates and related information.
Random failures of this kind can be reduced by increasing safety
margins between the capability of the target system and the
demands made on it by the application.

While hardware factors may contribute to the failure of a
programmable system, problems arising from defects in
software are generally not random and cannot be described by a
predictable failure rate. They arise from particular combinations
of circumstances, and are perfectly repeatable if the same
circumstances recur. These failures are systematic or functional
- the latter term indicates that they are due to the incorrect
functioning of the system in some cases.

Simply increasing safety factors will not reduce the incidence
of systematic failures. These failures generally arise through
oversights in specification, invalid assumptions made during
design and development, and mistakes during detailed design.

Control of systematic failures requires that processes carried
out during the project lifecycle are carefully managed. They are
minimised by factors such as good communications between
individuals or groups involved in different activities, making sure
that all parties involved are aware of assumptions or limitations
in scope, or clearly conveying the intention of the developers to
end-users. Systematic failures in computer-based projects may
also occur in the interface between hardware and software.

The differences between random failures, which are effectively
treated with well-developed mathematical methods, and
systematic or functional failures, must be remembered in any
exercise to manage risk in software-based systems.

In situations involving multi-component systems, failures are
often not the result of problems with hardware elements or
malfunctions in software items. They are more likely to arise
from incorrect interactions between the elements of a system,
or between the system and the environment (Leveson, 2002).
A “failure” resulting in loss may involve organisational or
management aspects of the design or operational system rather
than specific identifiable hardware or software elements, or the
commonly blamed “human error” at the point of application.
Systematic failures can occur at any stage of the project
lifecycle, from initial concept development through to actual
operational or productive activities.

1 An extract discussing the Therac-25 accidents is available at sunnyday.mit.edu/therac-25.html

RISK ASSESSMENT

AS/NZS 4360: 2004 Risk Management gives a well-established
and widely recognised process for managing risk in a general
business environment. The steps set out here cover the first four
stages of the AS/NZS 4360 process, covering the identification
and evaluation of risk. Other stages included in this document
cover treatment of hazards and ongoing monitoring and

review activities.

The first stage of the risk management process is to establish
the context for the project, and identify and assess the risks to
which the project could be exposed. Where safety issues are
concerned, identification of hazards is an explicit requirement
placed on the owner or operator of a project by occupational
health and safety legislation. There are also related obligations
on designers and others involved in the development,
implementation and operational phases.

The risk assessment process has four stages. These can be
summarised as:

o What could go wrong? Identify the hazards.
. What happens if it does? Analyse the consequences.

. What can we do to avoid it? Identify possible preventive
measures.

o What can we do if it does happen? Evaluate mitigation
measures.

A major benefit of the risk assessment activity is that it makes
people involved with the project aware of the possibility that
things could go wrong, and that there is a need to take some
special precautions. It should be a team activity with all the
groups involved in the final project, and treated as

an educational or training exercise as well as an

engineering activity.

One of the outcomes from the risk assessment should be an
indication of the overall cost that hazards will have on the
project during its lifetime - including the cost of prevention and
mitigation measures, and a reasonable estimate of the
potential losses.

A formal risk assessment process needs to be carried outin a
controlled fashion, and the results fully documented and made
available to all interested parties. However, risk assessment
should also become an activity that is built in to the decision-
making process at a very low level - team members should

be aware of the possible impact of their decisions and act
accordingly. No golfer will systematically analyse the risk
associated with bunkers - this becomes an automatic reaction,
affected on the day by other influences such as wind direction.

Context
A product designed for experienced adults may be dangerous
if used by children or those without specific training. This is an

example of how the different uses for a product may affect the
overall risk.

The same applies to systems that include software components.
If a software package is to be used for limited purposes by
people who are very familiar with it, the associated risk may

be very small. However, if the package is adopted for use in a
different environment, or made available to less experienced
users, the likelihood of error is much greater.

Context also applies to the total system in which a software
package may be used. If designed for use on a stand-alone
computer, there is no need to consider the possibility of
malicious damage by unauthorised users accessing the system
via the Internet. However, if the package is used on a connected
system, this problem must be addressed.

Context may involve the hardware platform intended to run the
software, and may be affected by the hardware configuration of
the platform. Many industrial software packages were originally
written using the standard PC serial port to communicate with
target hardware. With the replacement of the serial port in
laptops with USB ports, some of these packages can no longer
be used.

Context may also be concerned with the size of the associated
application. An example of a factor affected by size is the time
to access information in a large database. This may also be
adversely affected by the number of users trying to access the
system at one time.

Details of the context in which a software component may be
used should be set out in a User Requirements Specification or
similar document.

Hazard Identification

The first step in any engineering activity should identify the
hazards associated with the proposal. It is important to list not
only the specific hazards associated with the normal day-to-
day running of the project, but to consider those that come
about during the implementation and disposal phases, and any
extraordinary activities during operation.

In a hardware-based engineering project, the hazards are
directly associated with the activities being monitored or
controlled, and a hazardous event is triggered by something
outside the monitoring, control or protective system. Some
examples of typical hazards are high pressures or temperatures,
moving machinery, or corrosive chemicals. Hazardous

events involve conditions outside the normal working range,
malfunction of machinery or injury due to incorrect operating
procedures, or unexpected releases.

These hazards tend to be well-documented and are often
identified using check-lists created during similar exercises.

Hazards peculiar to a specific context and not generally
applicable should be specified in the project brief. In software
terms, they should be spelt out in the User Requirements
Specification. However, the design team must also act to
establish whether hazards other than those specified are likely
to be involved. Formal procedures such as a HAZOP review
attempt to force the review team to consider a wide range of
possible hazards.

Itis increasingly being recognised (Leveson, 2005) that
physical events such as component failure have less effect

on the total project risk than system failures, often involving
management issues during project development or operation.
As stated above, these types of failure are the main contributors
to software-related risks. Because they are less tangible and
poorly recognised (if recognised at all) in incident reports, they
are often overlooked during hazard assessment. However, it

is important to identify any assumptions made during a risk
assessment that involve factors relating to the risk - one
example is the extent of training or other competencies required
of those working with the system.

Problems usually arise in hardware systems when there is an
abnormal event of some kind, so that the system deviates
from its normal operating regime. Codes of Practice set out
acceptable procedures to follow during design or operation.
Legislation may require a design to comply with these Codes or
provide evidence that work is to a similar or higher standard.

Where software is involved in a protective system, a software
failure could affect the ability of the system to respond correctly
when required. In this context, a software failure is not often
regarded as a hazard in its own right - it will be considered
along with the underlying physical hazard. However, it is also
possible for a software fault to trigger an incident without an
external event - the software failure itself is the trigger event
that is directly responsible for loss. No outside event initiates
the problem.

Some generic headings for pure software hazards could be

(Howard et al, 2005):

o data corruption - for example, buffer overflow

o deliberate misuse or malicious intervention (hacking)

o invalid data entry

3 errors in specification, program design, or development
activities

. hardware failure

. incompatible software modules in a multi-tasking system

Other more specific hazards must be itemised for individual
projects.

It needs to be emphasised that many hazards are introduced by

failings in the wider management system rather than specific
problems arising from either hardware or software. For critical
systems, project managers must take care to use control or
monitoring practices that are commensurate with the degree of
risk if a failure occurs.

Identify Consequences

A hazardous event associated with any of the identified hazards
may give rise to a number of different undesirable outcomes.
These are even more context-dependent than the hazards. Some
consequences to consider are:

> physical safety issues - where failure of software or
hardware may directly result in injury or adversely
affect health
. These apply particularly to programmable systems
used in industrial applications to provide protection or
supervision of dangerous processes.

o There have been several cases where failings in
medical computer systems have been responsible for
patients receiving incorrect dosages of medication.

. Software used to make engineering calculations
needs to have proper testing, verification and
validation to make sure the calculations are correct.

> economic damage
. Financial effects are probably the major potential
consequence of a software system failure.

o There are a number of ways this could arise - from
errors in accounting applications to failure to account
for specific factors.

> legal consequences
o Where software is used to comply with legal
obligations, incorrect operation might leave an
organisation open to prosecution.

> environmental damage
. This is another consequence that may apply mainly to
process control or supervision applications.

o Records such as Material Safety Data Systems may
cause damage if, for example, the properties of a
substance are wrongly recorded.

> public opinion
e While not directly related to hard engineering or
financial damage, this topic needs to be specifically
addressed.

. Events that appear to be relatively minor from an
engineering or financial viewpoint may attract a
disproportionate level of publicity compared with the
measurable consequences.

o Failings in this area may cause loss of future

business, additional costs to an organisation because
of increased problems obtaining planning permission,
or a need for increased advertising or other
expenditure to overcome the damage.

. Bad publicity may also result in indirect financial loss
through a drop in the organisation’s share price.

In a software context, the consequences of a failure are not
often physical. While physical damage to hardware must be
considered, for example by developing disaster recovery plans,
much of the harm arising from a software system failure is likely
to be financial.

Evaluate Consequences

Once the consequences have been identified, they must be
ranked in some way to make sure that the resources available
for risk control are used to best effect. While public opinion may
be a good reason to devote resources to high-profile outcomes
that may in fact have a low impact and are very unlikely to occur,
this needs to be properly justified rather than be an automatic
reaction. There is always a danger that a major hazard may be
overlooked or neglected because resources are used to deal
with a hazard that is much less significant.

A number of methods have been used to evaluate the
consequences of failure in hardware systems and are well
described in the literature?. Applying these methods to software
may not work so well. The traditional methods use expected

FIGURE 1: REDUCING PROBABILITY OF FAILURE

probability as one of the parameters, but as we have seen this
may not be relevant to software systems where functional or
systematic failures are more likely to be significant.

A number of tools can rank hazards based on the possible
consequences. A very simple approach is to assign hazards a
ranking from 1-4 based on the severity of consequences, with
another ranking of 1-4 based on the expected probability. The
overall ranking is found by multiplying the two rankings, giving a
value of 1-16. While this method is simple and relatively easy
to implement, it is artificially precise in its results. For example,
the ranking of a hazard with severity of four and probability of
two is eight, while a hazard with probability ranking of three and
severity of three has a relative risk which is one point higher. In
reality, these situations need further analysis to sort out their
relative significance, or they would be given the same priority
for treatment.

Some qualitative methods are given as examples in IEC
Standard 61508: Functional Safety of Electrical/Electronic/
Programmable Electronic Safety-Related Systems (International
Electrotechnical Commission, 1998-2000). In each of these,
factors affecting the overall risk level are assigned to classes or
ranges, which are then used to indicate a requirement for the
integrity of the resulting system. While specific to issues relating
to personnel safety, these techniques can be easily amended

to other aspects of risk. We will look at these in more detail in a
later section.

SEVERITY
. Probability Measures

High

- ¢ @ Initial

Risk
Mitigation Measures
Medium
Tolerable Risk

Low

Low Medium High

Probability

RISK REDUCTION

2 See for instance: Smith D J 2005, Reliability, Maintainability and Risk, Butterworth-Heinemann.

RISK REDUCTION

The ideal target for risk for any project is zero. However, it is not
practical to expect to reach this, and in the real world, there
will always be some risk attached to any activity, regardless of
the resources used to deal with it. The practical engineering
objective is to reduce the risk associated with an activity to a
level that can be tolerated in the context where that risk arises.

Tolerable Risk

One of the initial decisions that should be made in any project is
the level of risk that is tolerable. This may depend on the size of
the organisation that will use the product - a large multinational
organisation has many more resources than a small start-up
firm, and may be prepared to underwrite a much higher level

of costs arising from hazards. If the total overall risk cannot be
reduced below the tolerable level, the project viability must be
reconsidered.

The tolerable risk is a performance figure that that has to be
taken into account when making any engineering decisions. A
design with a level of risk well below the tolerable level may have
been over-engineered, while one that does not meet this target
will be unacceptable on safety or related grounds.

Tolerable risk is usually defined in terms of the total risk arising
from all hazards associated with the project. When dealing with
individual hazards, the tolerable risk associated with a single
hazard must be much less than the overall tolerable value. In
general, the tolerable risk associated with a single protective
function should be between 10 and 100 times less than the
overall tolerable risk for the operation as a whole (Timms, 2006).

In general, the overall risk obtained during the risk assessment
phase will be well above the tolerable level. If the raw risk
associated with any hazard is well below the tolerable level, no
further action is needed in relation to that hazard. However there
will be some hazards that carry a risk that is much higher, and
these need to be reduced in some way. Initially, resources used
for risk reduction will be most effective if applied to the hazards
having the highest risk, and the risk assessment exercise will
target these areas.

The ALARP principle is a guide to the amount of risk reduction
that is necessary.

ALARP

ALARP stands for “As Low As Reasonably Practicable”. It
expresses the concept that risks need to be reduced to a level
that is low enough, but not too low. The terminology introduces
a couple of significant points to take into account in any risk
evaluation exercise.

Any risk evaluation exercise is inherently uncertain. In a well-
engineered project, hazardous events should have a very

low probability of occurring during the total life of the project.
However, it is not possible to guarantee that they will not arise.
You can never state that there is “no risk” associated with an
activity of any sort. When those with a high probability have been
attended to, low-probability hazards will remain.

However, a level of risk that is “too high” makes the project
unsustainable. Because of this, as part of the overall project
objectives, there should be some statement regarding what is
an acceptable risk for the project. The “reasonable” component
of ALARP is very vague and generally not regarded with favour
by lawyers. However, it does reflect that there is a need for
engineering judgement as to what is “reasonable” in a given
context. Generally, if a risk prevention measure costs more to
implement than the amount it reduces the overall risk to the
project, it is “unreasonable” to expect the measure to

be applied.

The ALARP concept divides the range of risks into three regions.
Unacceptable, high-risk levels are classed as “intolerable”, with
very low risks classified as “broadly acceptable”. The United
Kingdom Health and Safety Executive has published guidelines
relating these classes to the probability of fatality per person
per year in their publication Reducing Risks Protecting People
(2001). In this document, the threshold for a risk to be classed
as intolerable is a probability of fatality of 1x10° per person

per year if the affected person is an employee. For a member of
the public, the threshold is 1x10*. Risks less than 1x10° are
considered as “broadly acceptable” while less than 1x107

is “negligible”.

Reducing Probability of Failure

Risks can be reduced in a number of ways. If the probability of
the initiating event can be reduced, this will have a direct impact
on the overall risk. With some hazards, the probability of the
initiating hazardous event is outside the control of the engineer
- an example in civil engineering is the frequency of earthquakes
in a particular location. However, with other hazards, the
initiating event is a failure of some sort, and here the frequency
of failure can be controlled to some extent by design decisions.
In designing a car, engineering measures such as anti-lock
brakes are intended to reduce the likelihood that the driver will
lose control and go into a skid. (See Figure 1 on page 8.)

Reducing Severity - Mitigation

Mitigation measures act to reduce the severity of the outcome,
given that a hazardous event has occurred. Where the
underlying frequency of hazardous events cannot be reduced,
as with earthquakes, engineering measures such as seismic
isolation of buildings reduce the impact of the event, and are a
form of mitigation.

Mitigation measures may be used with protective measures

to minimise the overall risk. The airbag in a car is an example

of mitigation - it is intended to reduce injury in the event of a
loss of control. The combined system of anti-lock brakes and
airbag includes elements to reduce the probability of a skid, and
elements to reduce the impact of a skid should one occur.

THE EFFECTIVENESS-CASE

The process of assessing risks identifies the problems that

have to be addressed during the design and development
process in order to meet the performance objectives of the
system, whether these relate to safety, reliability or other related
measures. Part of the activity during the development phase
must ensure that these problems are addressed, and that the
system meets the specified performance requirements.

While it is possible to comply with requirements using an
informal process and modifying the design as a result of reviews,
it is far more effective to consider performance issues at the
outset and decide on strategies to deal with these issues.
Development of a product, and its subsequent operation and
maintenance, are made much easier if the decisions made
during initial development are documented in a suitable form.
Documentation may also be specifically required by legislation or
in the terms of a contract.

A safety-case, in applications involving physical risk, is a
document that demonstrates that a system is acceptably safe to
operate in a particular context. It must include evidence about
the system performance after hazardous events, and set out the
arguments linking this evidence to particular requirements of
safety performance.

A great deal of work has been done in this area in recent years,
particularly by the Department of Computer Science at the
University of York in the United Kingdom. Much of this aims

at the process to prepare a safety-case and formalising its
structure. While aimed specifically at the issue of demonstrating
safety, the approach extends easily to cover other areas of risk. A
generic term to cover these other aspects is the “effectiveness-
case”, and this will be used in the discussions below.

Goal Structuring Notation

Much of the work done at the University of York and other
institutions uses a graphical format to demonstrate how a
system’s performance requirements can be met. This is done
by defining goals, and then setting out strategies to meet these
goals. In many cases, a goal will have a number of associated
sub-goals.

This work is based on a PhD thesis by Kelly (1998). There are
many parallels between the use of the Goal Structuring Notation
(GSN) and the ideas of top-down development, and just as the
details of a design are refined during the development process,
the effectiveness-case should evolve as well.

The top-level of the effectiveness-case using GSN is a statement,
in the form of a logical proposition. This is the goal that is to be
proven. For example, a generic goal could be:

“System X meets the requirements for operation as specified in
Document 123.”

This goal has some specific items that identify the particular
context. We are dealing with System X, and the specific
document setting out the requirements is also identified.

The basic format of a GSN document would identify strategies
to demonstrate this. In our example, we could elaborate on this
with strategies to cover the safety requirements, environmental
consequences, and financial aspects of the performance
specification. Each of these strategies may then result in a
series of sub-goals. The process continues until a strategy can
be demonstrated to be complete by some action - this is then a
basic solution.

Kelly highlights the need for careful attention to syntax in this
process. A goal is a logical proposition to be proved, and must
be written using a <noun-phrase> <verb-phrase> format.
Strategies are not methods of achieving the desired result

- they are ways to demonstrate that the result has been met.
Kelly gives an example where the strategy “use mechanical
interlocks” is incorrect - it refers to a design decision rather
than to the way in which that decision can be evaluated.

His recommended wording for this strategy is “argument by
appealing to effectiveness of mechanical interlocks in design”.
As an instruction, this becomes “argue by appealing to...”.

Dealing with Failure Modes

The standard techniques to assess risk — or demonstrate
effectiveness of hardware-based systems - use statistical
approaches such as Fault Tree Analysis or Failure Modes and
Effects Analysis (FMEA). Because these apply to failure modes
that are essentially random, they are not well suited for dealing
with systematic failures with software systems, or to system
failures at management level.

This difference can be explicitly dealt with using GSN, by
identifying different strategies as being suitable to assess
different failure modes. For random failures, a suitable strategy
could be:

“Argue by using Fault Tree to demonstrate an acceptably low
failure rate.”

Systematic failures can be minimised by following appropriate
procedures in the product, or by using techniques such

as inspection or testing during development. The strategy
associated with these can be written in a form such as:

“Demonstrate that the design process used is appropriate to the
risk level.”

System Integrity Level

The strategies used to demonstrate an effectiveness-case must
include references to the integrity of any protective measures. It
must be possible to show that any features that protect against
a hazardous event will in fact be effective if that event occurs.

Another consideration (that is sometimes overlooked) is that
some systems must not operate unless the target incident
occurs - airbags in cars are a good example of this.

IEC 61508 defines safety integrity for protective systems as
measured by the probability of failure of the system under
consideration. It categorises integrity into four Safety Integrity
Levels (SIL 1-4), with SIL 1 the least rigorous and SIL 4 the most
severe. For safety systems, which operate under exceptional
circumstances, the required SIL is based on the probability that
the system will fail to operate when a legitimate demand occurs
- the Probability of Failure on Demand (PFD). For protective
systems with a high demand rate, such as machine guards, the
SIL is determined by the reliability of the equipment expressed in
failures per hour.

For political reasons, IEC 61508 is concerned solely with safety
systems. It is not concerned with the effects of a spurious
activation of the safety system, although these may have some
adverse effects. However, the SIL is useful in areas where the
critical nature of the system is not specifically safety-related, and
in these cases it can be thought of as “system integrity level”
rather than “safety integrity level”. It will be used in this sense in
this document.

FIGURE 2: SYSTEM INTEGRITY LEVEL

Low Demand

Probability of
failure on demand

High Demand
Failures per hour

System Integrity

102 - 10* 10° - 10°
10% - 10? 107 - 10°
10% - 10 108 - 107
10% - 10+ 10° - 10%

The SIL required for a particular protective function can be found
by assessing the risk to the enterprise arising from the hazard
with no modifications, and comparing this to the specified
tolerable risk for that hazard. For instance, if the expected

rate of a high-pressure event in a steam system is once every
two months, and the tolerable frequency of a pressure-related
system failure is once in 200 years (or a 10 per cent chance of a
pressure failure over the expected life of 20 years) the protective
system can be expected to work 1,200 times. The failure rate
must be better than 1 in 1,200, or less than 0.0008. This is a
PFD of 8 x10* and corresponds to SIL 3.

Required failure rates can be evaluated quantitatively from
calculations involving numerical assessments of severity

and probability. However, these assessments often involve a

lot of work using statistical data that are not sufficiently well
defined for this purpose. Failure rates of new and highly reliable

equipment cannot be specified with any degree of confidence,
and failure rates of installed equipment depend very much on
maintenance routines, adverse factors in the environment, and
the availability of suitably trained staff. A more useful approach
to assess the system integrity requirements is based on a
qualitative analysis.

Figure 3 shows a chart from IEC 61508 that can be used to
determine the required SIL for a protective function. There are
four categories of consequence, ranging from C, (minor) to C,
(major). Likewise, probabilities are ranked from W, (low) to W,
(high). Other factors modify the requirements depending on the
likelihood that people will be exposed to the hazardous event
when it occurs, and the possibility that anyone so exposed
might be able to avoid injury (because of a slow development or
warning noises, for example).

As published, the chart does not give any indication on what
is regarded as “minor” or “major” consequences, or “low” or
“high” probability. To use these scales, they must be calibrated
to match conditions in the target environment. Generally, low
probability is a situation arising only once or twice during the
expected life of a project, while high can be expected several
hundred times. Minor consequences in a physical safety
application may be injury to one person resulting in less than
one day of lost time, while major may involve several fatalities.
The calibration of these charts has to be decided by the
customer organisation in line with the overall tolerable risk
designation for the activity.

Similar charts may be drawn up for other sets of consequences.
The diagram below shows possible arrangements for charts
relating to production loss and environmental damage, together
with possible details for the calibrations.

A qualitative assessment of integrity requirements may be made
using these charts as a guide to stimulate group discussion. A
suitable group might consist of members of the project team,
and representatives of the client organisation and end-users.

By identifying each hazard in turn, and then evaluating the
consequences, the SIL for each component of risk can be
identified - required SIL is the highest of those figures. So, if
safety considerations result in SIL 2, production losses SIL 3,
and environment SIL 1, the system must meet SIL 3.

In the context of the effectiveness-case, the SIL provides a
reference that can be used to identify relevant techniques

for different phases of the development or design activity.
Strategies can then demonstrate that the techniques are in line
with an accepted industry standard such as IEC 61508.

Meeting SIL Requirements

What is the impact of the SIL on the design process? IEC 61508
sets out acceptable procedures that will allow the required
integrity level to be met if implemented properly. Software

FIGURE 3: IEC 61508 RISK ANALYSIS PROCEDURE

CONSEQUENCES:
Ca Minor Ca
Cb
Ce
Cd Major
EXPOSURE: . Cb
Fa Rare to frequent
Fb Frequent to
continuous Ce
AVOIDANCE:
Pa Sometimes possible Cd
to avoid
Pb Almost impossible
to avoid
PROBABILITY:
W1 Low
w2
W3 High

W1 W2 W3
- - d
Pa
Fa y, 1
Pb
Fb _Pa ; 1 2
Pb
Fa
b Pa 1 2 3
Pb
o o, 2 3 4
Fb
Pb 3 4 b
a: No special requirements
1-4: SIL
b: Another approach required

FIGURE 4: ENVIRONMENTAL AND PRODUCTION LOSSES

Ea
Eb

Ec

Ed

Pa
Pb

Pc

Pd

ENVIRONMENT

Minor Spill/Discharge
Release within fence

Limited consequences
Release outside fence
Limited Consequences
Release outside fence
Major Consequences

PRODUCTION

Minor operational upset
Moderate loss of production
Limited damage to equipment
Major loss of production
Major damage to equipment
Major damage to

non—spared equipment

PROBABILITY:
W1
w2
W3 More than 1 a year

Less than 1 in 10 years

Wi w2 w3
Ea
a a a
Eb . 1 5
Ec 2 3 3
Ed 3 4 4
Wi w2 w3
Pa
a a a
Pb . 1 1
Pe 1 1 2
Pd 2 3 4

elements are covered in Part 3 of the Standard - these are
further expanded in Part 7. As an example, Table A.3 in Part 3
deals with software design and development tools as well as
programming language.

The requirements for suitable programming languages

are set out in Section C.4.6 of Part 7 of the standard, and
recommendations relating to specific programming languages
are given in Table C.1 of this Part.

The levels of recommendation are:

HR Highly recommended - if this technique or measure is not
used, the reasons for not using it should be detailed during
safety planning.

R Recommended as a lower measure to an HR
recommendation.

- The technique has no recommendation for or against its
use.

NR The technique or measure is positively not recommended

for this safety integrity level - if it is used, the reasons for
using it should be detailed during safety planning.

From Table A3, use of a suitable programming language is
“highly recommended” for all SIL levels. Use of a restricted
subset of the language is not required for SIL 1 and SIL 2, but is
highly recommended for SIL 3 and SIL 4. Tools and translators
must be certified or have demonstrated reliability through
extended use.

While standard C and PL/M are acceptable for use at SIL 1,
they are not recommended for SIL 3 or SIL 4. However, provided
a restricted subset is used, with defined coding standards

and static analysis tools, C is acceptable for the higher

integrity levels.

These are some of the recommendations given by IEC 61508.
Others relate to the need for independent testing and inspection
of code, competency requirements for people working on

the project, definition of responsibilities for various activities
within a project, and factors such as project communications,
documentation and control. Those working on software projects
with a requirement for high integrity are strongly advised to
make themselves familiar with the full set of recommendations.

TABLE A.3 - SOFTWARE DESIGN AND DEVELOPMENT: SUPPORT TOOLS AND PROGRAMMING LANGUAGE
(SEE 7.4.4)

Technique/

Measure
1 Suitable programming language C.4.6 HR HR HR HR
2 Strongly typed programming language Cc4.1 HR HR HR HR
3 Language subset c.4.2 - - - - HR HR
4a Certificated tools c4.3 R HR HR HR
4b Tools: increased confidence from use c4.4 HR HR HR HR
5a Certificated translator Cc.4.3 R HR HR HR
5b Translator: increased confidence from use c4.4 HR HR HR HR
6 Library of trusted/verified software modules and components C.4.5 R HR HR HR

*Appropriate techniques/measures shall be selected according to the safety integrity level. Alternate or equivalent techniques/measures are indicated by a letter following
the number. Only one of the alternate or equivalent techniques/measures has to be satisfied.

(extracted from IEC 61508-3, 1st edition, 1998)

TABLE C.1 - RECOMMENDATIONS FOR SPECIFIC PROGRAMMING LANGUAGES

Programming Language SIL1 SIL2 SIL3
1 ADA HR HR R R
2 ADA with subset HR HR HR HR
3 MODULA-2 HR HR R R
4 MODULA-2 with subset HR HR HR HR
5 PASCAL HR HR R R
6 PASCAL with subset HR HR HR HR
7 FORTRAN 77 R R R R
8 FORTRAN 77 with subset HR HR HR HR
9 C R - - NR NR
10 C with subset and coding standard, and use of static analysis tools HR HR HR HR
11 PL/M R - - NR NR
12 PL/M with subset and coding standard HR R R R
13 Assembler R R - -
14 Assembler with subset and coding standard R R R R
15 Ladder diagrams R R R R
16 Ladder diagrams with defined subset of language HR HR HR HR
17 Functional block diagram R R R R
18 Functional block diagram with defined subset of language HR HR HR HR
19 Structured text R R R R
20 Structured text with defined subset of language HR HR HR HR
21 Sequential function chart R R R R
22 Sequential function chart with defined subset of language HR HR HR HR
23 Instruction list R R R R
24 Instruction list with defined subset of language HR HR HR HR

(extracted from IEC 61508-7, 1st edition, 2000)

SUMMARY

Engineering projects involving software components, or projects
involving only software, involve risks similar to those found

in hardware-oriented engineering activities. Where these

risks cannot be reduced by other measures, the engineering
processes used during the development and design phases
must be suitable to ensure that the system will operate with the
required degree of integrity. High-integrity may be required to
ensure personnel safety, or to minimise exposure to financial
risk or other risk areas.

The risk management process starts with identifying hazards
and assessing the associated risk, involving the probability of a
hazardous event and the severity or cost of the consequences.
Where risks are excessive, they can be reduced either by
reducing the probability of a hazardous event or by adding
measures to reduce the severity. In either case, evidence must
be produced to show that the measures effectively meet the
target risk levels. Additional equipment (involving hardware and/
or software) must be of sufficient integrity to provide confidence
that it will function as and when required.

Risk management requires the development of a case showing
that the developed system meets the specified integrity
requirements, which may involve reliability as well as safety
issues. This case should include evidence related to the
integrity, as well as an argument setting out how the evidence
demonstrates effectiveness. A suitable format for this is Goal
Structuring Notation.

For software systems, integrity cannot be guaranteed simply
through statistical failure rates. Most software failures are
systematic or functional rather than random, and can be
avoided only by adopting appropriate measures during design
and development. Suitable measures for safety-related systems
are set out in IEC 61508. While this is concerned with safety-
related systems, its recommendations can be extended to cover
other risk areas.

ACKNOWLEDGEMENTS

These guidelines were prepared by Bruce Durdle, based on
notes for a course introducing the basic concepts of IEC 61508.
Comments on these notes were made by Dr E Scharpf and C
Feltoe. A number of people have commented on or reviewed this
document. They include:

D A Hall

A Holt

C Skinner

J Moore

B MacDonald
P Voldner

T McBride

A Clark

REFERENCES

Health and Safety Executive 2001, Reducing Risks, Protecting
People, United Kingdon Government, London. Retrieved from
http://www.hse.gov.uk/risk/theory/r2p2.pdf.

Howard et al 2005, 19 Deadly Sins of Software Security,
McGraw-Hill, New York.

International Electrotechnical Commission 1998-2000,
Functional safety of electrical/electronic/programmable
electronic safety-related systems, IEC 61508 parts 1-7.

Kelly, T 1998, Arguing safety - A systematic approach to
managing safety cases, PhD Thesis, Department of Computer
Science, University of York.

Leveson, N G 1995, Safeware: system safety and computers,
Addison-Wesley Professional.

Leveson, N G 2002, Model-based analysis of socio-technical
risk, Engineering Systems Division, Massachusetts Institute of
Technology.

Leveson, N G 2005, A systems-theoretic approach to safety in
software-intensive systems, IEEE Transactions on Dependable
and Secure Computing, 1(1), p66-86.

Standards New Zealand 2004, New Zealand standard: Risk
management, AS/NZS 4360:2004.

Timms, C R 2006, Achieving ALARP with safety instrumented
systems, The First Institution of Engineering and Technology
International Conference on System Safety, p8.

APPENDIX 1: CRITICAL SOFTWARE SYSTEMS

RISK ASSESSMENT CHECKLISTS

These lists show items that may need to be considered during a risk assessment exercise. They are not specific recommendations,
but form a base to develop the specific needs of each individual project. In particular, the items listed may or may not be relevant, and
further entries will be needed to meet the requirements of a specific case.

Checklists can summarise vital information for a project development team, and can also record issues that arise during a project for
future reference - either by the end-user or during later development exercises. They can also be used to record common data for use
throughout the project.

1. CONTEXT

The items on the left of this table are issues to consider during the initial concept development. Any requirement for the item should be
indicated under the “Required” column, while the “Specified” column should contain a reference to this issue in the User Requirements

documents.
speCified

> User capabilities

application experience

computer literacy

physical requirements?*

> Access

physical

internet

controls

> Operating system

> Number of users

normal

peak

> Interfacing

> Hardware requirements?

1 For example, colour blindness.

2 Is there a need to use a specific platform or special hardware features? For example, many industrial software packages rely on the availability of a “standard” RS232
serial port to interconnect to target hardware - users of these packages are seriously inconvenienced by the absence of such ports on modern laptops.

2. CRITICAL OBJECTIVES

This section identifies and records the primary objectives for the project. It also allows space for the tolerable failure rates for
each objective to be set down.

Sections such as “Physical safety” and “Legislative” will generally need to be expanded further to identify particular areas
of concern.

Target Tolerable Failure Rate

> Performance

response time
accuracy
availability

> Physical safety

> Legislative

> Environmental

public relations

3 Project budget limitations as well as required economic returns need to be considered.

4 Failure to meet deadlines for delivery of the design may have major consequences.

3. HAZARDS

The Hazards checklist provides an opportunity to identify the particular issues that might arise from failure of the system to operate
as intended. The “Possible” column should be used to indicate whether or not a particular item is an issue - if it is, assessment is
needed to determine how often it might arise. The SIL column allows the results of an integrity review to be recorded alongside the
relevant hazard.

Again, some of the item entries may need to be expanded to give finer detail, and the item list should be treated as an example only
- some items may be irrelevant while others may need to be added.

Possible Frequency SIL

> Data entry

maximum item length

> Associated equipment

failure

> Unauthorised access

physical

electronic

> Other software®

o1

“DLL Hell” is an example where loading a later version of software can impact on the operation of programs already installed.

4. CONSEQUENCES

This list summarises possible areas where failure could result in a cost to the user or developer. It provides an indication of the areas
of concern, and a basis for assessing the relative costs associated with each area.

Assessment Method Cost

Service to users

degraded

halted

Health and safety

Environmental

Economic

Legal

Public relations

PHID
PHID
PHID

/B
BINBETH> TD=
EINBETH> 1D=

PERD/
BEED/
BPEED/
PRGD/
PRED/
PR2 1/
PRID/

e
=
b=

© J

: PN ELLE
REEHAEATHTENTEST
PREHBERILEETEE

8653 DIFHBEATLHR
SCBOn RIEEBEAEHT

For more information, contact:

National Office
PO Box 12 241
Wellington 6144
New Zealand

64 4 473 9444
64 4 474 8933
ipenz@ipenz.org.nz

ENGINEERS NEW ZEALAND wWw.ipenz.org.nz

El'ﬂ'l1—|

