LACUTE” />
CUTE” />
CUTE” />
"ZDOT"/>
"ZDOT"/>
GAMMA"/>

//%HETA"

/>

i ALPHA"

’DELTA"/>
= EPSILON” />

5 IGMA” />

e
_ND
”%3

e
8

2
\;D

s

E@ﬁ;é}COREDBL"/>

EXLLAMDBL” />
UEERIOR” />

TA" />
WLEFT” />
’ WUP” />

:,,’ARROWR IGHT” />

% OWN” />
g§§0TH"/>
: UPDN”/
2 OWUPDNBSE” />

,%§§RTHOGONAL"/>
E ’INTERSECTION"/>

EQUIVALENCE"/>

SE”/
LOGICALNOT"/>
NTEGRALTE” />

INTEGRALBT"/>
17 F%OOD 0" />
100007 />
100007 />
300007 />
200007 />

400007 />
007/>
00”/>

60007 />

e

11

b}
SIS

o=
1

ey
Tri et

jehe

Wﬂi

§
o

K
u\uu u

TERE

it

T

i
A

e
&

‘.;I H-E}H%%H-f‘jmb”-f‘j”

nH %
ggg -

25 50 R 5D £ 00 P M R 5| 410 | £2°) S KO 58 X1 50 S22 2 S22 g P) R Kl P S| S5 K P P 1) o S s K0 gt X K £33 30 S B S0 60 HE3H) | £ C HEE) D S 1| | | RS P X | 1530 KD
D

2 i 0007 />
i' :i\il 0”/>
I 00007 />
=0 007/>
OEA900007 />
= 00007 />
2 :TQJ ﬁo 0"/>
5 00" />
”A&E@PE&DM@@ 0 SRE ',/ 5
”E@@E?Bﬁbnﬁm@fgggg D SF3800007/>
"ggggégggnﬁm@fﬁmﬁﬁ 5. AF2800007/>
7 REEYERE DDAdR A9 e §;§}27oooo"/>
rEGRYRE DDIBRHITHH s ="SF260000"/>
"z@@ﬁgﬁﬁbﬂﬂmgfﬁﬁﬂﬂ ="”SF360000”/>
7 1EGRYBE DDIDRHHT s”SF370000”/>
"2GEY =7SF420000” />
" YEBY’ ég&'goooo"
a1ty 585 2 =75F2000007 />
vggﬁbygmbnﬁg@fgﬁgg ME="SF230000"/>
71 @EEPRYBDITRABOT 5”SF4700007/>
. EREDR #1508 ﬁ\, F4800007/>
: NAMES/SF4100007 />
HQAME="SF450000"/>
s ERSF460000” />
o Z Ef"SF4000OO"/>
7 F540000”/>
519 /55300007 />
KME="SF440000"/>
- *;'UPBLOCK"/>
G o OLK” />
= i '
36, i %) 0
i 7 T oK />
T XDE” />
o 15 DE” />
” YRYBDT IR~ u /s
"G@@Egﬁmygﬂggﬁéggg il 0 ="FILLEDRECT” />
ERBPREDRI@RANS 26 @bl 7:TRIAGUP:/>
vt 0 R TAGON" />
:zggggggb@ﬂﬁsmﬁﬁgg Ty 5" TRIAGLF” />
7S ERY REPOIRRMETES Jif o ="CIRCLE"/>
71 &G PRDDRUPRHIDBY 7 QR =" INVBULLET” />
"2 BERPRODAMDALIAEE?Y Bl SRGNYSIROLE" />
SN it g e
”s o ” ”
" <EEHEREDRITRHADEY @33} Ef"SgSA£E"/>
" SEGHERLD (i 7 EEMAL
7 SEEHPREBUBR DAY Wy :"S§§EE£5>
AEEYPRERRIDRHAIES @t s} EZC Sonn
7 AGEYBREBRIIDASDEY A P pRLus >
" AEEFVRPDOIMRHAIEE E*"DIAMOND"/>
" REGDEREBRIDBAIIAY % = B
"SGR REBREDBYSIAS 23 E=”MUSICALNOTE” />
”ﬁgﬁkﬁﬁig@sﬂ@mﬁiﬂ@ R CALNOTEDBL” />
A0 A RID TR ;s" />
i o ROPHE” />
X S T i
X 0T />
%Zgﬁr\(m N JE ND” />
i 2
N TEPELI61248" />
AL N oPELL61289”/>
s QER! iolN%V 175, 073" />
"SGR RE BRI IBAATSY e pa37/>
"NOEBEREBRIDBAIDE3 Q! NSl 23300
s@@%kﬁ@&@@gﬁmﬁiﬁﬁ a0 OO e s
5 *E%R % CRON" />
BREDPSIOT o y 5, CRON"/>
"QEEPEREBRTDB=2358 e 730055 NONE HCC§ECUMFLEXH/>
REEUPREBREDP42539 i it 995 NAME="CCIRCUMFLEX />
SEENPREDRIBR42 560 {1l EUTE 9y IRME= "CDOT"/>
"TRGPEREDD DD~ 562" i SuTH; & NAME="CDOT" />
AGHOPALP /3D="562"% fLL T @guNﬁME—"EMACRoN"/>
7 BEGRRERE D >I D="563%<CGYAWEI O FPT §7 ” NgME: EMACRON" />

" RAGRAPEID SID="564" NAME="AFII10058”/>
#pE@RRYBHYB ID="565" NAME="AFII10059”/>
<GLYPHID ID="566" NAME="AFII10060”/>

ENGINEERS NEW ZEALAND

Good Practice Guidelines
for Software Engineering

In New Zealand

The New Zealand
Computer
Society Inc.

The Institute of
MEASUREMENT AND CONTROL NZ INC.

CONTENTS

Minister’s Foreword

Foreword

Introduction

What Is Different About Software?

Why Worry About Software Engineering Process Standards?

How Can Engineering Standards Help Software Development?
How Can Standards Help Software-intensive System Operations?
Conclusion

Acknowledgements

References

Appendix 1: Examples of Key Software Development and Operations Engineering Process Standards

o o a0 A W DN

13
15
15
16
18

MINISTER’S FOREWORD

New Zealand’s future economic development and international competitiveness is reliant upon improving our digital
capability, infrastructures and skills - across government, the business sector and communities. These aims are
brought together in the Labour-led Government’s Digital Strategy.

Underpinning many of these areas is reliance upon international good practice and conformance with internationally-
recognised standards. In the area of software engineering standards IPENZ has taken a leadership role and developed
Good Practice Guidelines for Software Engineering in New Zealand. Increasingly, New Zealand software development
companies will need to conform to accepted international benchmarks in order to remain internationally competitive.
These guidelines mean that New Zealand companies will have a point of reference for the standards required by the
global software market when developing new products.

The Government recognises that these guidelines are important. Industry-led initiatives, such as the development
of these guidelines, assist in New Zealand’s transformation into an innovative, knowledge-based, internationally-
competitive economy.

Therefore, | commend the Institution and its collaborators for undertaking this valuable work.

Hon David Cunliffe

FOREWORD

New Zealand’s economic development relies on good practices for developing and operating software-intensive
systems. Moreover, to strengthen New Zealand’s export competitiveness - both in terms of cost structures and
delivered product quality - software development organisations must adopt the good practices already being used
elsewhere around the world.

The financial transaction component of our economy has been largely “digital” for many years now. We are also
rapidly implementing “digital government” through initiatives flowing from the Government’s Digital Strategy.
But these critical infrastructures for our 21st century economy fundamentally rely on trustworthy software-
intensive systems.

Already our society is highly dependent on software intensive systems, and in turn their definition, development,
implementation and operations. Obvious everyday examples include:

. electronic cash registers used for virtually all purchasing - whatever the final payment mechanism might be

. stock control systems

. monitoring and control systems for public utilities, transportation systems and health care

o rapid and easy web-based access to government-held information

o industrial control systems

Building and operating these kinds of critical systems are dependent on good practices across the whole software-
intensive system lifecycle, such as those codified by international software engineering standards and maturity
frameworks. While slavishly following good practices won’t guarantee reliable or cost-effective development and

operations, poor or mediocre practices make reliability and effectiveness a matter of chance rather than good
management.

There are many other reasons for referring to documented good practices. They:

. foster traceability of features delivered to meet customers’ requirements
. describe ways of avoiding risks caused by the failure of software-intensive systems

. provide checklists of procedures and practices that improve the overall efficiency of software development
processes

o encompass considerations for building in and maintaining security, privacy and resilience to malicious attacks

In short, good practices as embodied in international software standards and frameworks are the roadmaps
towards a disciplined approach to software systems development and operations.

INTRODUCTION

Engineers like solving problems - especially difficult problems.
Although it has become relatively easy to commission hardware
for information technology, many non-trivial problems continue
to plague software development and operational processes.
Software engineering problems have remained “hard”.

Many of the good practices in other engineering disciplines have
been codified and are enforced in nationally and internationally
accepted standards. However, this doesn’t generally apply to
software development and operations in New Zealand. There

is plenty of room for improvement in referencing to - and
conforming (J Moore, personal communication)? with - software
engineering process standards in New Zealand (Sung and
Paynter, 2006).

While not a “silver bullet” solution (Brooks, 2003) to all

software problems, software engineering standards can

support improvement in software development and operations.
Software engineering standards can also help reduce costs

and complexity when specifying and evaluating components
incorporating software in larger systems. International standards
in software and system engineering are also excellent references
for good practice in software development and operations.

Along with international economic, legal and cultural
requirements, internationally accepted software engineering
process standards are becoming increasingly important.
Software intensive systems development and operations can be
undertaken anywhere in the world - for clients anywhere in the
world. So, at whatever scale they operate, New Zealand software
developers will increasingly be at a competitive disadvantage

if they cannot demonstrate knowledge of and adherence to
software engineering standards. Successful export of value-
added products that rely on software-controlled processes

for manufacture, quality assurance and inventory control will
also increasingly depend on demonstrable conformance and
possibly obligatory compliance to software engineering process
standards.

The following are some international and New Zealand
examples of guidelines or requirements to comply with software
engineering standards or quasi-standards:

o The Payment Card Industry (PCl) Security Standards
Council’s Data Security Standards (DSS) (2006) which
include requirements to “develop software applications
based on industry best practices and incorporate
information security throughout the software development
lifecycle” and to “develop all web applications based on
secure coding guidelines such as the Open Web Application
Security Project guidelines”.

o The Association for Computing Machinery’s studies
of implementing voter registration databases (2006)
(equivalent to New Zealand’s electoral roll system)

concludes that e-voting systems “technology, if engineered
and tested carefully, and if deployed with safeguards
against failure, can strengthen [the USA’s] voting system,
but...we still have work to do in meeting these goals”
(Spafford, 2006).

. In New Zealand, issues with Student Management Systems
(SMS) for use in primary and secondary schools led to
the Ministry of Education initiating an “SMS accreditation
process so schools would have reliable and consistent
data about the various SMS packages available in the
New Zealand market” (2005). In addition to reviewing
the functionality of the SMS applications, The Ministry
also reviewed suppliers’ business organisation, supply
of application support services, software development
management and quality assurance, and technology
roadmaps.

. The New Zealand Government’s Communications
Security Bureau’s Security of Information Technology
publication NZSIT 400 (2005) - which provides guidance
to government agencies for managing the risks of sharing
information and includes reference to various international
IT security standards.

Software engineering process standards can be used in
essentially two ways (Christensen and Thayer, 2001):

. to define the “right things to do” - as normative reference
model codifications of good practices to guide software
engineering processes - the implicit assumption being
that the quality of a software-intensive system is directly
influenced by the quality of the development and
operational processes

. to measure whether the “right things are being done”
- that is, the degree of conformance to codifications? of
good practices - often expressed as a score derived from a
“process maturity level” framework

This document identifies some sources of software engineering-
specific process standards to which practising professional
engineers in New Zealand might want to refer, and it identifies
situations when standards might be useful (J Dietrich, personal
communication).®

1 Moore notes that the preferred nomenclature is “to conform”, which connotes voluntary agreement to standards, as opposed to “to comply”, which carries a meaning

of enforced obligation.

2 “A normative document prescribes what an engineer should do in a specified situation rather than providing information that might be helpful. The normative literature
is validated by consensus formed among practitioners and is concentrated in standards and related documents.” (ISO/IEC 19759)

3 “In addition to the standards mentioned in [this document] there are several de-facto standards. These standards are not (yet) maintained by an international
standard body but are either promoted by vendors and consultancy firms (example: IBM’s Rational Unified Process RUP) or by communities like the Agile Alliance,
http://www.agilealliance.org/ Examples include: Extreme Programming XP, Scrum, FDD. The existence of these de-facto standards reflects the very nature of the
software industry where technology and methodologies used change frequently and [international] standard bodies are not agile enough to reflect this.”

WHAT IS DIFFERENT ABOUT SOFTWARE?

In essence, software is a set of instructions to carry out a
sequence of actions resulting in a set of observable states,

each state being dependent on some or all previous inputs

and intermediate states. A useful metaphor for both software
and its development is solving a scrambled Rubik’s cube. The
initial state and goal state can be well defined - but a variety of
action sequences (“algorithms” or “procedures”) can be taken to
achieve the desired result.

In practice, not all new individuals entering the domain of
software development and operations have trained in computer
science or software engineering. “Even if they have computing
degrees, they may never have learnt about what has been done
by people before them. Many [of these] people purposely ignore
the lessons of the past. It may take a major project failure before
these people realise that the problems they encountered were
neither new nor unique.” (Endres and Rombach, 2003)

Other engineering disciplines are generally well supported by
science-based knowledge. However, the industrial practices of
software engineering are not generally well supported by the
theories of computer science. For example, there is little support
from robust, well-accepted theories and abstractions about
quantifying the complexities of real-world problem spaces.

In general, we can’t accurately estimate how much effort should
be required to solve a given software development problem
unless we have solved a very similar problem before (Brooks,
2003). Empirical information about the effort and cost involved
in successful software development is generally only anecdotal
or proprietary in nature. The tie back to universal physical laws
and constraints and the experiences of having solved numerous
tangible engineering problems have very limited applicability in
software development.

Furthermore, unlike a physical structure, it can be very difficult to
discern the overall “software architecture” and quality attributes
of a software system by examining the code implementing

the system’s algorithms (Baragry and Reed, 2001). This
accounts for the significant effort required to reconstruct the
software architecture of an operating system once the original
creators have moved on and knowledge of the decision-making
considerations that resulted in the design is lost (O’Brien et al,
2002; P Kruchten, personal communication; Kruchten, 2004).
It's “about as easy as reconstructing a pig from a sausage”
(Eastwood, 1993).

WHY WORRY ABOUT SOFTWARE ENGINEERING
PROCESS STANDARDS?

Professional engineers involved in specifying, developing,
evaluating or managing software - or specifying and evaluating
systems incorporating software-intensive components - should
ask the following questions:

o To what extent should, and does, the development process
comply with recognised standards?

. Are the standards complied with appropriate for the
development being undertaken?

. What are the potential problems that could arise if the
software fails to perform as required? As articulated in [EC
61508 and the accompanying paper (Durdle, 2006), this
should be assessed and expressed in similar terms to the
outcomes of a hardware engineering risk analysis.

o If there is some degree of non-compliance, what is the
impact on the process, the software or system being
delivered and the resulting risks?

o If the client is not aware of or concerned about compliance

to appropriate standards, how should the impacts of the
above be communicated?

HOW CAN ENGINEERING STANDARDS HELP SOFTWARE DEVELOPMENT?

Software engineering is the part of systems engineering (Doran,
2006)* that deals with the systematic development, evaluation
and maintenance of software. Software engineering standards
can provide the equivalent of instructions to “cheat” by
disassembling the Rubik’s cube and piecing it back to achieve
a desired result. While standards can provide guidance as to
how to decompose the total problem space into coordinated
component problems, they won't tell the developer how to
create new algorithmic procedures. So in that sense, standards
are only part of an engineering approach to software system
development. But they can form the basis of a robust, auditable
and repeatable quality management approach to tackling the
hard problems of software-intensive large-system development.

Some of the advantages of conforming with software
engineering standards include (E Tempero, personal
communication):

3 risk management - process standards have often been
formulated purposefully to identify, address, reduce and
avoid risk, as discussed in Best Practice Guidelines for Risk
Management of Software-based Systems (IPENZ, 2006)

. predictability - by following consistent processes the
resource requirements for similar kinds of activity will
become easier to identify and estimate

. audit - to satisfy customers’ expectations that appropriate
processes have been followed to produce the end product,
much as “Producer Statements” do to comply with the
Building Act 1991

. health and safety requirements - particularly in order to
demonstrate that appropriate design consideration has
been taken for life-critical and safety-critical software
systems

e service differentiation - as a marketing feature,
demonstrable adherence to standards might well be
perceived as added value by customers who can choose
between alternative suppliers of software engineering
services

However, some factors to consider before mandating
“heavyweight” software engineering process standards are
(Glass, 2003; Garcia, 2005):

. size matters - small development projects that involve a
handful of developers are vastly easier than larger projects

. application domain matters - for example the
mathematical formalism often needed for scientific
applications is typically unnecessary for business oriented
software intensive systems

. criticality matters - if lives or vast sums of money are
impacted by the results of a project it should be treated
carefully, especially in respect to reliability requirements

o innovativeness matters - if the problem being addressed is
quite unlike one previously solved, an exploratory and less
process-driven approach to its solution may be appropriate

* what the competition is doing matters - complying with
software engineering process standards might well become
a requirement for entry into some markets, or remaining in
existing markets

. poor performance matters - adopting software engineering
process standards might help solve difficulties in getting
the right quality level of software delivered to customers on
time and within budget

. required investment matters - adopting software
engineering process standards incurs costs in terms of
process development, deployment, maintenance and
appraisal

. organisational culture matters - key considerations include
business strategy and goals, embedded work practices,
potential for transformation and the appetite for change

Nevertheless, software engineering process standards are
important to software quality assurance as they codify good
practices and they go a long way to address the distinctive
problems of non-trivial software development noted above. The
assumption that software engineering process standards are
too expensive and difficult for implementation by small-sized
software development organisations is challenged by reported
successes from using tailored approaches - for example in
Australia (Cater-Steel, 2004), Brazil (von Wangenheim et al,
2006) and various countries in Europe (Lawthers, 1999).

An historical issue was the proliferation of software engineering
standards and standards setting bodies, resulting in the quip
“the nice thing about standards is that there are so many

to choose from”.® At one time, 55 producers of software
engineering standards were active publishing more than 300
standards (Magee and Thiele, 2004). However, this “quagmire”
(Sheard, 2000) has now solidified to a smaller set of key
producers and standards (Moore, 1998; Brotbeck et al, 1999).

From a New Zealand perspective, the key internationally
accepted software engineering development process standards
(and quasi standards) producers are:

. IEC - the International Electrotechnical Commission

. ISO - the International Organization for Standardization

. JTC1 - the ISO/IEC Joint Technical Committee and its
subcommittees working on IT standards

. IEEE - the Institute of Electrical and Electronics Engineers,
Software and Systems Engineering Standards Committee

. SEI - the Software Engineering Institute
. OMG - the Object Management Group

4 Standards for the wider area of systems engineering are being harmonised and include ISO/IEC 15288 Systems Engineering - System Lifecycle Processes; IEEE 1220
IEEE Standard for Application and Management of the Systems Engineering Process.

5 Attributed to A Tannenbaum.

While the standards produced by these bodies aren’t always
consistent and at the same level of detail, they do define a
common set of processes that are generally adequate for
current use. In practice, the processes can be tailored to meet
development requirements and capabilities - but caution should
be exercised should contractual or regulatory requirements
dictate compliance.

As of 2006 some New Zealand-specific IT standards have been
mandated or are under development for government agencies:

3 e-Government Interoperability Framework Standards
relating to Network; Data Integration; Business Services;
Access and Presentation; Web Services; Security;

“Best Practices” in Digital Rights Management, Trusted
Computing, Business Process Execution Language,
Business Data Transformation, Data Modelling, Processing
Structured Data, Document File Formats; Meta Data
relating to government agencies; Authentication; Email
Security and Intranet usage

e guidelines for the management and design of public sector
websites

o the New Zealand Government Locator Service (NZGLS)
Metadata Element Set, providing a set of metadata
elements designed to improve the discovery, visibility,
accessibility and interoperability of online information and
services

. process guidelines for managing and monitoring major IT
projects published in August 2001 by the State Services
Commission

In general, these government-adopted standards and guidelines
are representative of industry-acknowledged international good
practices.

Internationally, the following standards and framework are
accepted as normative prescriptions and measures of “good
practice” for software engineering development processes:

* ISO/IEC 12207 Information Technology - Software
Lifecycle Processes

. ISO/IEC TR 19759 Software Engineering - Guide to the
Software Engineering Body of Knowledge

e |ISO/IEC 15504 Information Technology - Software Process
Assessment

e SEl's Capability Maturity Model Integration

ISO/IEC 12207

ISO/IEC 12207 “establishes a common framework for software
lifecycle processes, with well-defined terminology, that can be
referenced by the software industry”. It “provides a process
that can be employed for defining, controlling, and improving
software lifecycle processes”.® The IEEE and Electronics

6 From ISO/IEC 12207, Section 1.1: Purpose.

Industries Alliance (EIA) added to ISO/IEC 12207 by publishing
three additional standards forming part of the IEEE Software
and Systems Engineering Standards collection:

> IEEE/EIA 12207.0 Standard for Information Technology
- Software lifecycle processes. This contains ISO/IEC
12207 in its entirety and includes six additional annexes
which address:
* basic concepts - such as categorising lifecycle
processes into primary, supporting, organisational and
tailoring

e compliance situations, levels and criteria

e lifecycle process objectives - acquisition, audit,
configuration management, development,
documentation, improvement, infrastructure, joint
review, maintenance, management, operation,
problem resolution, quality assurance, supply, training,
validation, verification

¢ lifecycle data objectives
* relationships between standards

* errata

> 12207.1 Standard for Information Technology - Software
lifecycle processes. Lifecycle data, which provides
additional guidance on recording lifecycle data.

> 12207.2. Standard for Information Technology - Software
lifecycle processes. Implementation considerations, which
provides additions, alternatives and clarifications to ISO/
IEC 12207 based on US industrial experience.

“ISO/IEC 12207 is intended to be independent of development
technologies and methodologies and useful for any form of
lifecycle model, for example, waterfall, incremental, spiral, etc..
In fact, one of the specified responsibilities of the supplier’s role
is to select a lifecycle model and map the requirements of the
standard to that model.” (Moore, 2006)"

ISO/IEC TR 19759

ISO/IEC TR 19759 (International Organization for
Standardization, 2005) is a republication of a document
sponsored by the IEEE Computer Society commonly referred

to as the guide to the “SWEBOK” (Software Engineering Body

of Knowledge) (IEEE Computer Society Software Engineering
Coordinating Committee, 2004). Officially it is a Technical Report
of type 3: “when the joint technical committee has collected
data of a different kind from that normally published as an
International Standard (“state of the art”, for example)”. ISO/IEC
TR 19759 represents a broad consensus within the professional
software engineering community of the processes of - and

good practices in - software engineering for both development
and operations through identifying and describing the body

7 This is an excellent guide to the use of the IEEE Software and Systems Engineering Standards (and those IEEE standards shared with ISO/IEC) as a codified set of

knowledge and good practices in accordance with ISO/IEC TR 19759.

of knowledge that is generally accepted as being “software
engineering”.

“From the beginning, the SWEBOK project was conceived as
having a strong relationship to the normative literature of
software engineering. The two major standards bodies for
software engineering (IEEE Computer Society Software and
Systems Engineering Standards Committee and ISO/IEC JTC1/
SC7) are represented in the project. Ultimately, it is hoped that
software engineering practice standards will contain principles
directly traceable to the Guide.”

ISO/IEC TR 19759 is subdivided into ten software engineering
knowledge areas plus an additional section providing an
overview of the knowledge areas strongly related to software
engineering process disciplines:

. software requirements

e software design

e software construction

e software testing

e software maintenance

¢ software configuration management

. software engineering management

o software engineering process

o software engineering tools and methods
3 software quality

. disciplines related to software engineering: computer
engineering, computer science, management,
mathematics, project management, quality management,
software ergonomics, systems engineering

Appendix C of ISO/IEC TR 19759 maps various IEEE Computer
Society Software and Systems Engineering standards and
ISO/IEC software engineering standards to the ten software
knowledge areas.

The material covered by ISO/IEC TR 19759 will be extended as
its users’ needs evolve. For example, consideration of security
aspects in software development activities and software itself
has become a topic of increasing concern for high integrity
systems in both commercial and governmental domains. To
address these new needs, as of late 2006 the United States
Departments of Homeland Security and Defense are developing
two related documents:

o A Guide to the Common Body of Knowledge to Produce,
Acquire, and Sustain Secure Software (Redwine, 2006)

. Security in the Software Lifecycle (Goertzel, 2006) - a
source of information and guidance for good software
development practices focused on security

Content from these documents might well be incorporated in

future versions of ISO/IEC TR 19759.

ISO/IEC 15504
ISO/IEC 15504 provides a framework for the assessment of
software processes to help:

. understand the state of an organisation’s software-
intensive systems development processes and process
improvement opportunities

. determine the suitability of an organisation’s software-
intensive systems development processes for a particular
requirement or class of requirements

ISO/IEC 15504 provides a common approach to describing

the results of process assessment while allowing for some
degree of comparison of assessments based upon different

but compatible models and methods. The sophistication and
complexity required of a process is dependent upon its context.
For instance, the planning required for a five-person project
team is much less than for a fifty-person team. The ISO/IEC
15504 and CMMI frameworks have been mapped to each other
by the Software Quality Institute at Griffith University in Brisbane
(Rout et al, 2000).

The major benefits of the ISO/IEC 15504 approach to process
assessment are that it:

. reduces uncertainties in selecting suppliers of software-
intensive systems by enabling the risks associated with the
supplier’s capabilities to be identified

o enables appropriate controls to be put in place to manage
the risks of software-intensive systems acquisition or
development

o provides a quantified basis for choice in balancing business
needs, requirements and estimated project cost against
the capabilities of competing sources of software-intensive
systems and components of such systems

o provides a public, shared approach for process assessment

J provides a common understanding of the use of process
assessment for process improvement and capability
evaluation

. facilitates capability evaluation in procurement

. can be controlled and regularly reviewed in the light of
experience of use

. can be changed only by international consensus

The ISO/IEC 15504 reference model architecture has two
dimensions:

e aprocess dimension for software-intensive systems
development, largely aligned to ISO/IEC 12207 - for which
example “base practices” for each process are listed below

. a process capability dimension

ISO/IEC 15504 defines two “primary” lifecycle process The customer-supplier category is broken down into the following

categories: processes:

. customer-supplier processes that directly impact the . acquisition: preparation, supplier selection, supplier
customer, support development and transition of software monitoring, customer acceptance
to the customer and provide for the correct operation and o supply

use of the software

. requirements elicitation

o engineering processes that directly specify, implement, or
maintain the software product, its relation to the system
and its documentation The engineering category is broken down into the following

. operation: operational use, customer support

TABLE 1: ISO/IEC 15504 REFERENCE MODEL CAPABILITY LEVELS
Capability Level

Level O:
Incomplete

Level 1:
Performed

Level 2:
Managed

Level 3:
Established

Level 4:
Predictable

Level 5:
Optimising

Description

There is general failure to attain the purpose of the process.
There are few or no easily identifiable work products or outputs of the process.

The purpose of the process is generally achieved.
The achievement may not be rigorously planned and tracked.

Individuals within the organisation recognize that an action should be performed and there is general
agreement that this action is performed as and when required.

There are identifiable work products for the process and these testify to the achievement of the purpose.

The process delivers work products according to specified procedures and is planned and tracked.
Work products conform to specified standards and requirements.

The primary distinction from the Performed Level is that the performance of the process now delivers work
products that fulfil expressed quality requirements within defined timescales and resource needs.

The process is performed and managed using a defined process based upon good software engineering
principles.

Individual implementations of the process use approved, tailored versions of standard and documented
processes to achieve the process outcomes.

The resources necessary to establish the process definition are also in place.

The primary distinction from the Managed Level is that the process of the Established Level is using a defined
process that is capable of achieving its process outcomes.

The defined process is performed consistently in practice within defined control limits, to achieve its defined
process goals.

Detailed measures of performance are collected and analysed, leading to a quantitative understanding of
process capability and an improved ability to predict and manage performance.

Performance is quantitatively managed.
The quality of work products is quantitatively known.

The primary distinction from the Established Level is that the defined process is now performed consistently
within defined limits to achieve its process outcomes.

Performance of the process is optimised to meet current and future business needs and the process achieves
repeatability in meeting its defined business goals.

Quantitative process effectiveness and efficiency goals (targets) for performance are established based on the
business goals of the organisation.

Continuous process monitoring against these goals is enabled by obtaining quantitative feedback and
improvement is achieved by analysis of the results.

Optimising a process involves piloting innovative ideas and technologies and changing non-effective processes
to meet defined goals or objectives.

The primary distinction from the Predictable Level is that the defined and standard processes now dynamically
change and adapt to effectively meet current and future business goals.

development processes:

. system requirements analysis and design
. software requirements analysis

e software design

. software construction

e software integration

e software testing

. system integration and testing

An additional engineering process is also defined at a basic level
- system and software maintenance.

ISO/IEC 15504 “supporting” lifecycle processes are those that
may be employed by any of the other processes at various points
in the software lifecycle. They include:

. documentation

. configuration management

. quality assurance

e verification

. validation

e joint review

. audit

. problem resolution

ISO/IEC 15504 “organisational” lifecycle processes establish
the business goals of the organisation and develop processes,

products, and resource assets which, when help the
organisation achieve its business goals. They include:

. management processes: project management, quality
management, risk management

. organisational processes: organisational alignment,
improvement processes - process establishment, process
assessment, process improvement

. human resource management

o infrastructure

o measurement

° reuse

The six capability levels in the ISO/IEC 15504 reference model
are described in Table 1 (see page 9).

CMMI

CMMI was developed by the SEI and is more widely used in the
USA than ISO/IEC 15504 for which it is essentially an alternative
assessment framework. CMMI provides a measurement
framework to assess process maturity for systems engineering,
software engineering, integrated product and process
development and supplier sourcing. CMMI is also a process

measurement and improvement approach that defines the
elements of effective processes for software development and
operations. It can be used to guide process improvement across
a project, a division, or an entire organisation.

CMMI helps integrate organisational functions, set process
improvement goals and priorities, provide guidance for quality
processes, and provide a point of reference for appraising
current processes (Carnegie Mellon University Software
Engineering Institute, 2007). A CMMI “staged representation”
metric commonly quoted is the “maturity level” which describes
the organisation’s overall maturity in software engineering
processes from 1 (initial, low maturity) to 5 (optimised, high
maturity).

The CMMI is a descriptive framework - it doesn’t specify how
organisations should satisfy the specific practices identified

at each maturity level. Rather it focuses on what should be
demonstrated. The IEEE Software and Systems Engineering
Standards (for example) define how to implement specific
practices to fulfil the CMMI requirements (for example, Land,
2005). They define processes along with the work products (also
known as “artefacts”) that provide support to and result from
the development processes.

Other Sources of Software Engineering Development Process
and Related Standards

Another potential source of good practice guidance for New
Zealand software-intensive systems engineering is the British
Standards Institute-initiated TickIT website (2005). TickIT is
essentially a UK-focused accreditation scheme for certification
organisations that conduct ISO 9000 audit/registration for
software development companies. A TickIT accredited 1ISO 9001
certificate is roughly equivalent to between CMMI Maturity Levels
2 and 3. The TickIT Web site offers:

. “Getting The Measure Of TickIT - Guidance and Information
about the emerging ISO measurement standards for
improving software processes and how they relate to ISO
9001”, published in February 2002

. “TickIT Reference List - An extension of the standards
list in appendix 5 of Issue 5 TicklIT Guide including details
of standards databases, an extensive reading list and
procurement information”, published with revisions in July
2001

Software Architecture Standards

One of the major challenges to large software-intensive systems
development is establishing the “software architecture” at

the early stages of development. An April 2004 report jointly
released by the Royal Academy of Engineering and the British
Computer Society noted:

“In general, the significance of architecture for complex IT
projects also tends to be poorly appreciated.”

approach to define software architectures by basing

the design process on the system’s quality attribute
requirements.

The SEI has developed elements of a “Software Architecture

Lifecycle Integration” process approach to defining and
analysing software architectures for large software-intensive

systems development (2007):

o The Active Reviews for Intermediate Designs (ARID)
concentrate on whether the software architecture design

being proposed is suitable from the point of view of other
parts of the architecture that must use it.

o The Quality Attribute Workshop (QAW) offers a method for

eliciting quality attribute requirements.

3 The Attribute-Driven Design (ADD) method provides an

TABLE 2: CMMI
CMMI Maturity Level

. The Architecture Trade-off Analysis Method (ATAM) helps
a system'’s stakeholders understand the consequences

Process Area

of software architectural decisions with respect to the

Number of Specific Practices that Must Be

Demonstrated Above Lower Maturity Level

1: Initial

Ad hoc - occasionally chaotic -
processes that rely on individual “heroes
and heroics” to deliver “death march”
(Yourdon, 2004) projects.

analyses.

2: Managed Requirements Management 15

Basic project management disciplines are | Project Planning 24

in place to allow repeatable success for Project Monitoring and Control 20

similar projects Process and Product Quality Assurance | 14
Configuration Management 17
Supplier Agreement Management 17
Measurement and Analysis 18 125

3: Defined Requirements Development 20

A wider range of software engineering Technical Solution 21

processes for development and Product Integration 21

operations are documented and complied | yvgrification 20

- ibly with tailoring. N

possibly with some tailoring Validation 17

Organisational Process Focus 19
Organisational Process Definition 17
Organisational Training 19
Integrated Project Management 20
Risk Management 19 193

4: Quantitatively Managed Organisational Process Performance 17

Detailed metrics are collected and Quantitative Project Management 20 37

used to manage the quality of both the

software engineering processes and end

deliverables.

5: Optimised Organisational Innovation and 19

. . . Depl t
Continuous software engineering process eploymen))
improvement based on quantitative Causal Analysis and Resolution 17 36

system’s quality attribute requirements and business goals.

o The Cost Benefit Analysis Method (CBAM) and Software
Architecture Comparison Analysis Method (SACAM) are
methods for architecture-based economic and business-
goal analyses of software-intensive systems to help
the system’s stakeholders choose between software
architectural alternatives.

In addition, various volumes in the SEI Series in Software
Engineering define good practices and for software architecture
development Bass et al, 2003). The book Documenting
Software Architectures: Views and Beyond (Clements et al,
2002) represents a de facto application guide to the rather
abstract IEEE Standard 1471 Recommended Practice for
Architectural Description of Software-Intensive Systems. As of
2006, IEEE 1471 is in the process of being adopted as an ISO/
|IEC standard (J Moore, personal communication).

Other open standards for “enterprise information systems
architecture” - from the definition of “business architecture”
requirements and processes, through to information
architecture, technology and software implementation,
documentation and change management - include:

o the Open Group Architecture Framework (“TOGAF”) Version
8.1 “Enterprise Edition” (2006)

o the National Association of Chief Information Officers’
Enterprise Architecture Toolkit version 3.0 (2006)

o the US Federal Enterprise Architecture Reference Models
(2006)

Software-intensive Systems Modelling Notation Standards
Graphical and mathematical representations of real objects are
important for engineering analysis and design in the physical
world. The equivalent representations for software-intensive
systems make use of various modelling notations, one of which
has been published as ISO/IEC 19501 Information technology
- Open Distributed Processing - Unified Modelling Language
(UML) Version 1.4.28 (UML release 2.0 is also available from the
Object Management Group, 2007). Another modelling notation -
the Business Process Modelling Notation (BPMN) - is emerging
as a de facto standard for describing the business processes
and software-intensive system interactions.

UML is a graphical notation for visualising, specifying,
constructing and documenting the artefacts of a software-
intensive system. UML offers a standard way to write a system’s
planning documents, including conceptual things such as
business processes and system functions, as well as concrete
things such as programming language statements, database
schemas, and reusable software components. It provides a
commonly understood notation set for use by developers of
“object-oriented” software-intensive systems - from architecture

design to intermediate-level descriptions of implementation.

From ISO/IEC 19501

“Developing a model for an industrial-strength software system
prior to its construction or renovation is as essential as having

a blueprint for large building. Good models are essential

for communication among project teams and to assure
architectural soundness. We build models of complex systems
because we cannot comprehend any such system in its entirety.
As the complexity of systems increase, so does the importance
of good modelling techniques. There are many additional factors
of a project’s success, but having a rigorous modelling language
standard is one essential factor.”

UML defines the following graphical diagrams for software-
intensive systems:

. use case diagrams
. class diagrams

. behaviour diagrams - statecharts, activity diagrams,
sequence and collaboration interaction diagrams, and
component and deployment implementation diagrams

UML has some shortcomings in relation to systems modelling,
which have led to the development of extensions to its language
by the SysML language being developed by the SysML Partners
forum (Open Source Specification Project, 2006).

BPMN (Object Management Group, 2007)° is a graphical
notation for business process modelling aimed at business
users. It is gaining widespread industry acceptance as a
process-centric (as opposed to UML's object-centric) approach
that is more intuitive for business analysts. BPMN focuses on
modelling control and message flows. BPMN also offers the
option of explicitly modelling business objects that may be
exposed through business services.

BPMN and UML complement each other. Business analysts will
likely use BPMN as a front-end modelling language and software
developers will use UML for subsequent technically-oriented
systems development.

8 Unified Modelling Language (UML) is undergoing enhancement with the latest specification (version 2.0) being available for free download from
http://www.omg.org/technology/documents/formal/uml.htm The UML specification version 1.4.2 adopted by ISO/IEC is available for free download from

http://www.omg.org/cgi-bin/doc?formal/05-04-01

9 Business Process Modelling Notation (BPMN) Version 1.0 Specification was adopted by the Object Management Group on 6 February 2006.

HOW CAN STANDARDS HELP SOFTWARE-INTENSIVE SYSTEM OPERATIONS?

Software-intensive systems operations is an area of increasing
focus as typically some 80 per cent of total cost of ownership
relates to ongoing “service management” costs. Standards for
software systems operations are important because:

. they embody good practices for service management of
software-intensive systems

o management of software-intensive systems is often critical
to the success of business and government organisations

. they can help define and manage the organisation’s
policies, internal controls and business practices in respect
to software intensive systems in cost-effective ways
because they represent codified good practices available
for reuse

o they can provide efficiency gains; reduce reliance
on experts; reduce errors; and they can provide
documentation for auditable procedures

Internationally, two sets of standards and one framework have
become increasingly accepted as normative prescriptions and
measures of good practices for software engineering operations
processes:

. the ISO/IEC 20000 standards

o ISO/IEC 17799-1 Code of Practice for Information Security
Management and ISO/IEC 27001 (an update to ISO/IEC
17799-2)

o Control Objectives for Information and related Technology
(COBIT) framework

1ISO/IEC 20000
In 2005, the ISO/IEC released:

. ISO/IEC 20000-1: Information technology - Service
management - Specification

. ISO/IEC 20000-2: Information technology - Service
management - Code of practice

The ISO/IEC 20000 standards cover good practices for service
delivery and service support. They address the following
aspects:

> service delivery processes
e service level management
* service reporting
e service continuity and availability management
e sudgeting and accounting for IT services
e capacity management
¢ information security management

> relationship processes
* Dbusiness relationship management
e supplier management

10 Refer to Office of Government Commerce Web site at http://www.itil.co.uk/

> resolution processes
¢ incident management
¢ problem management

> control processes
e configuration management
* change management

> release process
* release process management

The UK Office of Government Commerce’s IT Infrastructure
Library (ITIL) publications® are becoming generally accepted as
a standard source of good practices in process management
for software assets, service support, service delivery, IT
infrastructure management and security management in
support of the ISO/IEC 20000 standards.

ISO/IEC 17799-1 and ISO/IEC 27001

ISO/IEC 17799-1 provides a framework for information
security management and management practices to improve
the reliability of information security in inter-organisational
relationships. ISO/IEC 17799-1 documents good practice

in information security management systems as a “Code of
Practice”. ISO/IEC 27001 is a “specification for information
security management systems”. Areas addressed include:

. organisational security

* asset classification and control

. personnel security

. physical and environmental security

. communications and operations management
e access control

. systems development and maintenance

. business continuity management

. compliance

A related security standard ISO/IEC 15408 Security Techniques
- Evaluation Criteria for IT Security (also known as the Common
Criteria for IT Security Evaluation®!) defines criteria for a common
and comparable evaluation of IT security, focusing on the
security of systems and products.

Another source of information about good information security
practices is the Standard of Good Practice (SoGP) (2005)
published biannually by the Information Security Forum (ISF). It
is available free of charge from the ISF. The SoGP is developed
based on the practices of and incidents experienced by large
organisations around the world. The SoGP can be used as

a governing document for information security by itself or in
conjunction with other standards such as ISO/IEC 17799-1,
ISO/IEC 27001 and COBIT.

11 Unofficial versions of the Common Criteria and Common Evaluation Methodology released for public consultation can be downloaded from

http://www.commoncriteriaportal.org/public/expert/index.php?menu=3

COBIT

COBIT (Information Systems Audit and Control Association,
2005) is a comprehensive framework for software-intensive
systems governance, providing management tools such as
metrics and maturity models to complement a governance
control framework. COBIT defines 34 software-intensive
systems operations processes grouped along the lines of the
classic four-phase plan-do-check-act quality management
cycle. Each process is described in terms of:

o process description, metrics, practices and mapping of
the process to process domains, information criteria,
required resources and governance areas

. detailed control objectives for the process

. management guidelines including process inputs and
outputs, a RACI (Responsible, Accountable, Consulted
Informed) chart

e a maturity model for the process

The processes defined in COBIT 4.0 are outlined in Table 3.

TABLE 3: COBIT 4.0 PROCESSES
Define a strategic IT plan

Define the information architecture

Determine technological direction

Define the IT processes, organisation and relationships
Manage the IT investment

Communicate management aims and direction
Manage IT human resources

Manage quality

Assess and manage IT risks

Manage projects

Monitor and evaluate IT performance
Monitor and evaluate internal control
Ensure regulatory compliance
Provide IT governance

The COBIT framework addresses governance of software
service management processes within organisations by
linking together:

. business requirements
. a generally accepted service delivery process model
. the major resources involved in service delivery

. management control objectives

To establish the control objectives for software-intensive
systems operations and monitor performance levels COBIT
defines specific:

. benchmarking of process capabilities expressed as
maturity models, derived from the SEI's Capability
Maturity Models

. “balanced scorecard” goals and metrics for process
performance and outcome measurement

. goals for getting software-intensive systems processes
under control

Acquire and Implement:

Identify automated solutions

Acquire and maintain application software
Acquire and maintain technology infrastructure
Enable operation and use

Procure IT resources

Manage changes

Install and accredit solutions and changes

Deliver and Support:

Define and manage service levels
Manage third-party services
Manage performance and capacity
Ensure continuous service

Ensure systems security

Identify and allocate costs

Educate and train users

Manage service desk and incidents
Manage the configuration

Manage problems

Manage data

Manage the physical environment

Manage operations

In early 2007 it is planned that a fine-tuned COBIT 4.1 will be
released along with several other revised publications to create
an aligned COBIT 4 series of publications (Information Systems
Audit and Control Association, 2006).

An alternative top-down approach to defining governance

for software-intensive systems operations is Australian
Standard AS 8015 - Corporate governance of information and
communications technology. This standard provides guiding
principles for owners, board members, directors, partners,
senior executives, or similar on the effective, efficient, and
acceptable use of information and communication technology.
AS 8015 is quite brief - the substantive content is less than
five pages. It defines six high-level principles with application
guidance expected to be released in subsequent handbooks to
accompany the standard.

The AS 8015 governance principles are:
3 establish clearly understood responsibilities for information
and communications technology

. plan information and communications technology to best
support the organisation

e acquire information and communications technology validly

o ensure information and communications technology
performs well whenever required

o ensure information and communications technology
conforms with formal rules

. ensure information and communications technology use
respects human factors

CONCLUSION

Software engineering is still a rapidly developing discipline.
There remain many challenges in addressing the persistent
“software crisis”. Yet there are also many proven software
engineering-specific techniques and approaches derived from
traditional professional engineering disciplines that have been
codified as good practices in internationally generally accepted
software engineering standards. These standards are being
harmonised into a corpus of consistent standards that the
international professional software engineering community can
refer to as generally accepted knowledge, good practices and
measures to guide responsible professional conduct in software
engineering.

Ethically, it behoves practicing professional software engineers
in New Zealand to be aware of the good professional practices
described in the standards outlined in this paper. Consistent
with the practices of other professional engineering disciplines,
New Zealand professional software engineers should endeavour
to apply these good practices to solving their client’s problems
using processes that demonstrably address:

. client needs
. timeliness
. cost-effectiveness

. ethical requirements including sustainability

. risk awareness and management

ACKNOWLEDGEMENTS

These guidelines were developed by Duncan Hall. Many
individuals provided support and review during the preparation
of this document. They include:

A Holt

B Durdle

C Skinner

D Montgomery
E Tempero

J Moore

J Dietrich

M Milner

N Procter

New Zealand Computer Society anonymous reviewer(s)
P Croll

REFERENCES

Association for Computer Machinery Committee on Guidelines
for Implementation of Voter Registration Databases 2006, Study
of Accuracy, Privacy, Usability, Security, and Reliability Issues.
Retrieved 8 December 2006 from http://www.acm.org/usacm/
VRD_report.pdf

Baragry, J & Reed, K 2001, Why We Need A Different View of
Software Architecture, Proceedings of the Working IEEE/IFIP
Conference on Software Architecture, pp125-134.

Bass, L, Clements, P & Kazman, R 2003, Software Architecture
in Practice, (Second Edition), Addison-Wesley & Pearson
Education.

Brooks, F 2003, A Handbook of Software and Systems
Engineering - Empirical Observations, Laws and Theories,
Fraunhofer Institut Experimentelles Software Engineering,
Pearson.

Brooks, F 2003, Three Great Challenges for Half-Century-Old
Computer Science, Journal of the ACM, 50(1), pp25-26.

Brotbeck, G, Miller, T & Statz, J 1999, A Survey Of Current Best
Practices And Utilization Of Standards In The Public And Private
Sectors, State of Texas Department of Information Resources.

Carnegie Mellon University Software Engineering Institute 2007,
Capability Maturity Model Integration. Retrieved 11 February
2006 from http://www.sei.cmu.edu/cmmi

Carnegie Mellon University Software Engineering Institute 2007,
Software Architecture Life-Cycle Integration. Retrieved 26 August
2006 from http://www.sei.cmu.edu/activities/architecture/
arch_lIci.html

Cater-Steel, A 2004, Low-rigour, Rapid Software Process
Assessments for Small Software Development Firms, Australian
Software Engineering Conference Proceedings, pp368-377.

Clements, P et al 2002, Documenting Software Architectures:
Views and Beyond, Addison-Wesley & Pearson Education.

Common Criteria 2007, The Common Criteria Project. Retrieved
4 March 2006 from http://www.commoncriteriaportal.org/

Doran, T 2006, IEEE 1220: For Practical Systems Engineering.
IEEE Computer, May 2006, pp92-94.

Durdle, B 2006, Best Practice Guidelines for Risk Management
of Software-based Systems, IPENZ.

Eastwood, A 1993, It's a Hard Sell - and Hard Work Too,
Computing Canada, 18(22), p35.

Endres, A & Rombach, D 2003, A Handbook of Software
and Systems Engineering - Empirical Observations, Laws
and Theories, Fraunhofer Institut Experimentelles Software
Engineering. Pearson.

Federal Enterprise Architecture 2006, Reference Models.

Retrieved 1 September 2006 from http://www.whitehouse.
gov/OMB/egov/a-2-EAModelsNEW2.html

Garcia, S 2005, How Standards Enable Adoption of Project
Management Practice, IEEE Software, September-October
2005, pp22-29.

Glass, R 2003, Facts and Fallacies of Software Engineering,
Addison-Wesley & Pearson Education.

Goertzel, K M et al 2006, Security in the Software Lifecycle:
Making Software Development Processes - and the Software
Produced by Them - More Secure, Draft Version 1.2 (August
2006), US Department of Homeland Security. Retrieved 20
February 2007 from https://buildsecurityin.us-cert.gov/daisy/
bsi/resources/dhs/87.html

Hunter, R 2001, Software Process Improvement, in The Project
Manager’s Guide to Software Engineering’s Best Practices,
Christensen, M & Thayer, R eds, IEEE Computer Society Press.

IEEE Computer Society Software Engineering Coordinating
Committee 2004, A Guide to the Software Engineering Body
of Knowledge. Retrieved 11 February 2006 from http://www.
swebok.org

Information Security Forum 2005, Standard of Good Practice for
Information Security, January 2005. Retrieved 20 March 2006
from http://www.isfsecuritystandard.com/index_ie.htm

Information Systems Audit and Control Association 2005, COBIT
4.0 - Control Objectives, Management Guidelines, Maturity
Models. Retrieved 11 February 2006 from http://www.isaca.
org/

Information Systems Audit and Control Association 2006, COBIT
Focus Newsletter, vol.2. Retrieved 15 December 2006 from
http://www.isaca.org/cobitnewsletter

International Organization for Standardization 2005, ISO/IEC
19759:2005. Retrieved 5 March 2006 from
http://webstore.ansi.org/ansidocstore/subscriptions/dept.
asp?dept_id=3107&pagenum=74

IPENZ 2004, Practice Note 04 “Safety and Engineers”. Retrieved
from http://www.ipenz.org.nz/ipenz/forms/pdfs/PNO4_Safety.
pdf

Kruchten, P 2004, An Ontology of Architectural Design Decisions
in Software-Intensive Systems, in Second Groningen Workshop
on Software Variability, pp54-61.

Land, S 2005, IEEE Software Engineering Standards Support for
the CMMI Project Planning Process Area, IEEE Computer Society
ReadyNote.

Lawthers, | 1999, Software Process Improvement in Regions
of Europe, European Analysis Report. Retrieved 5 March 2006
from http://www.cse.dcu.ie/spire/spire.html

Magee, S & Thiele, D 2004, Engineering Process Standards:
State of the Art and Challenges, IEEE IT Professional,
September-October 2004, pp38-44.

Ministry of Education 2005, E-Admin Programme - Accredited
Student Management System. Retrieved 8 December 2006
from http://www.minedu.govt.nz/index.cfm?layout=document&
documentid=10428&indexid=11255&indexparentid=5646&got
0=00#TopOfPage

Moore, J 1998, Software Engineering Standards - A User’s
Road Map, IEEE Computer Society Press.

Moore, J 2006, The Road Map to Software Engineering: A
Standards-based Guide, IEEE Computer Society Press, p205.

National Association of Chief Information Officers 2006,
Enterprise Architecture Toolkit, Retrieved 1 September 2006
from http://www.nascio.org/

New Zealand Government 2007, E-Government Standards.
Retrieved 11 February 2006 from http://www.e.govt.nz/
standards

New Zealand Government Communications Security Bureau
2005, NZ Government Information Technology Security Manual:
NZSIT 400. Retrieved December 2006 from http://www.gcsb.
govt.nz/publications/nzsit/index.html

Object Management Group 2007, Business Process Modelling
Notation. Retrieved 20 March 2006 from http://www.bpmn.org/

Object Management Group 2007, Unified Modelling Language.
Retrieved 14 December 2006 from http://www.omg.org/
technology/documents/modeling_spec_catalog.htm#UML

O’Brien, L, Stoermer, C & Verhoef, C 2002, Software Architecture
Reconstruction: Practice Needs and Current Approaches:
Technical Report CMU/SEI-2002-TR-024, Carnegie Mellon
Software Engineering Institute, Pittsburgh.

Open Source Specification Project 2006, Systems Modelling
Language. Retrieved 20 March 2006 from http://www.sysml.org/

Payment Card Industry Security Standard Council 2006, Data
Security Standard, Version 1.1. Retrieved 8 December 2006
from https://www.pcisecuritystandards.org/tech/download_the
pci_dss.htm

Redwine, S T et al 2006, Software Assurance, A Guide to the
Common Body of Knowledge to Produce, Acquire, and Sustain
Secure Software, Draft Version 1.1 (September 2006) US
Department of Homeland Security. Retrieved 20 February 2007
from https://buildsecurityin.us-cert.gov/daisy/bsi/resources/
dhs/95.html

Rout, T, Tuffley, A & Cahill, B 2000, CMMI Evaluation - Capability
Maturity Model Integration Mapping to ISO/IEC 15504-2,
Defence Materiel Organisation (Australia). Retrieved 5 March

2006 from http://www.sqi.gu.edu.au/cmmi/report/top.html

Sheard, S 2000, Software Productivity Consortium, The
Frameworks Quagmire, A Brief Look. Retrieved 11 February
2006 from http://www.software.org/Quagmire/frampapr.doc

Spafford, E 2006 (8 November), ACM experts say more
required to improve e-voting, [Press Release], Washington: The
Association for Computing Machinery. Retrieved 8 December
2006 from http://campus.acm.org/public/pressroom/press_
releases/11_2006/¢election.cfm

State Services Commission and the Treasury 2001, Guidelines
for Managing and Monitoring Major IT Projects. Retrieved 11
February 2006 from http://www.ssc.govt.nz/display/document.
asp?DoclD=2726

Sung, P & Paynter, J 2006, Software Testing Practices in New
Zealand, in 19th Annual Conference of the National Advisory
Committee on Computing Qualifications.

The Open Group 2006, The Open Group Architecture Framework
- Version 8.1. Retrieved 1 September 2006 from http://www.
opengroup.org/togaf

The Royal Academy of Engineering 2004, The Challenges of
Complex IT Projects. Retrieved 4 March 2006 from http://www.
raeng.org.uk/news/publications/list/reports/Complex_IT_
Projects.pdf

TickIT 2005, TickIT Guide. Retrieved 4 March 2006 from http://
www.tickit.org/index.htm

von Wangenheim, C, Anacleto, A & Alviano, C 2006, Helping
Small Companies Assess Software Processes, IEEE Software,
January-February 2006, pp91-98.

Yourdon, E 2004, Death March, (Second Edition), Yourdon
Press/Prentice Hall Professional Technical Reference.

APPENDIX 1: EXAMPLES OF KEY SOFTWARE DEVELOPMENT AND OPERATIONS ENGINEERING
PROCESS STANDARDS

Title
ISO/IEC 9126, Product Quality
12207, Software Lifecycle Processes; 15271, Guide to use of ISO/IEC 12207

14143, Functional Size Measurement

14598, Product Evaluation

14764, Software Maintenance

15026, Software Integrity Levels

15288, System Lifecycle Processes

15408, Security Techniques - Evaluation Criteria for IT Security
15504, Software Process Assessment

15939, Software Measurement Process

16085, Risk Management

17799-1, Code of Practice for Information Security Management
19501, Unified Modelling Language (UML) Version 1.4.2

19759, Guide to the Software Engineering Body of Knowledge (SWEBOK) (Technical Report)
20926, IFPUG 4.1 Unadjusted Functional Size Measurement Method

27001, Specification for Information Security Management Systems

61508, Functional Safety Of Electrical/Electronic/Programmable Electronic Safety-Related Systems

610.12 Standard Glossary of Software Engineering Terminology

730 Standard for Software Quality Assurance Plans

828 Standard for Software Configuration Management Plans

829 Standard for Software Test Documentation

830 Recommended Practice for Software Requirements Specifications
982.1 Standard Dictionary of Measures to Produce Reliable Software

1008 Standard for Software Unit Testing

Title

IEEE cont. 1012 and 1012 Standard for Software Verification and Validation

1016 Recommended Practice for Software Design Descriptions

1028 Standard for Software Reviews

1042 Standard for Software Configuration Management

1044 Standard Classification for Software Anomalies

1045 Standard for Software Productivity Metrics

1058 Standard for Software Project Management Plans??

1061 Standard for a Software Quality Metrics Methodology

1062 Recommended Practice for Software Acquisition

1063 Standard for Software User Documentation

1074 Standard for Developing Software Lifecycle Processes

1220 Application and Management of the Systems Engineering Process®®

1228 Standard for Software Safety Plans

1233 Guide for Developing System Requirements Specifications

1362 Guide for Information Technology-System Definition - Concept of Operations
1471 Recommended Practice for Architectural Description of Software-Intensive Systems
1490 A Guide to the Project Management Body of Knowledge

1517 Software Lifecycle Processes - Reuse Processes

2001 Recommended Practice for Internet Practices - Web Page Engineering’*

Capability Maturity Models - for example CMM Integrated: CMMI

Standards New Zealand NZMP 6653 APEC-TEL Information Systems Security Standards Handbook (contains references to a wide
range of IT security standards)

Standards Australia HB 90.9 Software Development Guide to ISO 9001
HB 231 Information Security Risk Management Guidelines

AS 8015 Corporate Governance of Information and Communications Technology

12 IEEE Std 1058 is being merged with ISO/IEC TR 16326 on the same subject. The result will be published by both IEEE and ISO/IEC with the number 16326 (J Moore,
personal communication).

13 IEEE Std 1220 has been fast-tracked into JTC 1. The ISO/IEC number is not yet known (J Moore, personal communication).

14 IEEE Std 2001 has been fast-tracked into JTC 1 as ISO/IEC/IEEE 23026 (J Moore, personal communication).

For more information, contact:

ENGINEERS NEW ZEALAND

<CL
<GLYPHID ID="743"<
<GLYPHID ID="744"<
<GLYPHID ID="745"<
<GLYPHID ID="746"
SEHNEHID ID="247%
g

D2

w
&

DA
D)
R
%g
¢

=

e CEEL
SONTVT YN

6F
<GLYBH poE@
<GLY R a5 -5
<GLYBBEE:Elst
<GLYBH BB 3@iT
<GLYRB REAKBSI
<GLYBH¥B b

<GLYRRF

<GLYBBEG
<GLYBHE¥B;
<GLYBEXOLBHPE 3
<GLYRB KB,
<GLYRRXB,
<GLYBH SGLABHTPREG
<GLYBREB
<GLYFBEB,
<GLYRREB;
<GLYER§B,
<GLYBHXB
<GLYEH FOLIGEPEEY
<GLYBHER,
<GLYRRLKE,
<GLYRBXE
<GLYFBEB;
<GLYRBXB
<GLY Bl SGEXBHPERNY
<GLYBBEB,

<GLY

G
B R By

€

Niayolop)

0A02
F8AY
TFAQER
1345BEE.
97A3BKEG
F4BS(86
164E6E

9249@@@@@

£
4630 64 GERABOEHE 6

L REHRERGREEPEED
BEDUBSACOIR0SHS
BHCHBALEGLIPTE O BELASSL7 />
RACEBEATET.

vl ol S & S i i 229

PNECVAY W
o cl

4=
s
o

=
5%

2
D)
EX

S

&

&

&

NN
NosNG)

193
o
Patstwpesscatipulusesutatepafubagsestipeussy

7
i

4

=
&

A

R
e

e 55 5 1 1 | | 153 50 5 5 3 1 13 g 1 1 5 5 1 554 55 5 0) G 5

<GLYPHID ID="

feals:

(AN

SRR
IO VDTAVIVIVIHO DD ITROIOIOIGROROIOIGRO IO NO UG/ LO O X0/ WO/ O/ O/ O/ L8/ O/ O/ O/ (8 08/ 08/ 08/ 08/ 08/C0 00 00 00 0O

RIREIETRU

S BASGRASELBE I 6E2C20
GHASHEHSEE094 PB132356

BORELGINTETASEL?B” />

20, yPRgeGe2 942

ST PIFERTI
eLyba3dl 1pa

NP SeansSte th=rg57~
COQHARO) BDLg58”
Gy

627 N
%ﬁ:@ OKABOVIEEA
BHIOKABOVI 64>

7

%

%

PO U
(B2 DHORBTIBDE DL 865"
i 5 BHEDDE DL 8667

7

¥

%

SRRBOVE DL 871~
SRRBOVE DL 872

_: 5 ‘tH> 1D="873"
e BiEtH> 1D="874"
S %¥@@5/ZD:”875”

; BEEH/ 1D="876"
8 ﬁ QBEHD/ ID="877"
. SRGH/ 1D="878"

5 SRk 1D="879"
YL B2/ 1D="880"

P ﬁ QbRIB/ID-"881"
s L 9 bRg h/ 1D="882"
BRI/ 1D="883"

SbRgh/ 1p="884"

7 QT PRTD/ TD="885"
7 QT PREGD/ TD="886"
7 PRI PRI D/ TD="887"
7 SELYPRAY/ T D="888"
7 QELYPRAY/ I D="889"
7 QELYPRG /I p="890"
7 SSQVBHE B8 H2 591
7 SEQVBHE B0t h2 5 92
7 SEQVBHE L DL g 93~
7 <HVBER LBl g 04
7 QELYP%2 '/ I D="895"
7 QELYPR3IB/ I D="896"
7 QELYPAa '/ 1 D="897"
7 QELYPA D/ I D="898"
7 SELYPA/ T D="899"
7 SELYSAR B/ T D="900"
7 QELYPAG /T D="901"
7 QELYPAR B/ T D="902"
7 QELYEHA '/ 1 D="903"
7 QELYeRIt/ T D="904"
7 QELYARE B/ 1 D="905"
7 SELYAHE B/ 1 D="906"
7 SELYBRAY/ 1 D="907"
7 QELYBRY B/ T D="908"
7 QELYBRAY/ 1 D="909"
7 QELYBRIY/ I D="910"
7 YELYHBEY/ 1D="911"
7 OSLYPRI D/ 1D="912"
7 OSLYPBAD/ 1 D="913"
7, QRLQEBA T/ TD="914"
7 QELYPEE D/ I D="915"
7 QELY2RIB/ ID="916"
7 YELYBEE Y/ 1D="917"
:,/’ T9PHI D/ TD="918"
<GLYPHID ID="919"

/><GLYPHID ID—”920”

74ZCEL6NADURD WoBD

<GLYPHID ID="923"

0eLyB0091582 79247
83v3081 Y

v & L7925
T A0 v82iD7§307 926"
30060%08 vaRa 04896927~
06042500 vOUIE0 1927 028"
30200%@A vIRIE0 K04 9207
8010008 v0R300G 3L 930"
0050062 v04 1404057931~
30900808 vERE 646867 932
o %%%y@ﬁ%@5Q®l"933"
20 vB0E203427 9347
510802 v280B3GBB 935
05995486 v$886F 10R 936"
1500206 v0379049L" 9377
5945151, v30p0a93 7 938
09536361 verae2442 7 9397
03550408 vbaah5695 940"

2
2
S
62.YPHGH0T 594 1”
&

SELYSHIB5GDE 968"
2BO.YPEEB04 9B 9697
ELyedIb3G3e 970
GLyeRABL IO 971
B YPRTE54 bR 9727
GLyB4GR0q30 " 973
10 E3vbeTe6T 12" 974"
g : 20.v8Eep74 DL 975"
Q@&E@&ﬁ@&iﬁﬁ@ﬁ&@@%§@§ﬂ§§¥®E”lﬂ301506 035504@8ybHIB5§65 97 67
496E6 35y pHaB3 4 DR 977"
65726253 y6Hq POHDR" 978"

" NAMET ﬁfﬂﬂ @35:997 3/ i
NAMEY BT 612’[@07 e

NRMTY B GRRl Oy

National Office
PO Box 12 241
Wellington 6144
New Zealand

smmH

64 4 473 9444

64 4 474 8933
ipenz@ipenz.org.nz
www.ipenz.org.nz

